Light-driven ion extraction of polymeric membranes for on-demand Cu(II) sensing.

Anal Chim Acta

China CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong, 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong, 266071, PR China.

Published: September 2021

The modulation of the ion-fluxes across a polymeric membrane is important for designing attractive methodologies. As an alternative to the commonly used dynamic electrochemistry approaches, light can be used as an external stimulus and provides a very convenient way to manipulate ions release and/or extraction into a polymeric membrane. Herein, we designed a solid-contact polymeric membrane ion-selective sensor that exhibits dynamic response by light irradiation at 375 nm. The electrode membrane contains a light-sensitive lipophilic salt (bis(4-tert-butylphenyl)iodonium tetrakis[3,5-bis(trifluoromethyl)phenyl]borate (R-R, BTDT-TFPB) instead of traditional ion exchanger. Under light illumination, the decomposition of the lipophilic cation makes the membrane with ion-exchange properties. The solid-contact ion-selective electrodes based on potentiometry and constant potential coulometry have been explored for direct ion sensing. Copper was selected as a mode analyte and can be determined at micromole levels. The proposed dynamic ion sensors show promise for on-demand ion sensing.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2021.338756DOI Listing

Publication Analysis

Top Keywords

polymeric membrane
12
extraction polymeric
8
ion sensing
8
membrane
5
light-driven ion
4
ion extraction
4
polymeric
4
polymeric membranes
4
membranes on-demand
4
on-demand cuii
4

Similar Publications

Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].

View Article and Find Full Text PDF

Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion Membranes.

Nanomaterials (Basel)

January 2025

Département de Génie Électrique, École de Technologie Supérieure, 1100 Notre-Dame Street West, Montreal, QC H3C 1K3, Canada.

This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion membranes.

View Article and Find Full Text PDF

Zwitterionic polymers have garnered significant attention for their distinctive properties, such as biocompatibility, antifouling capabilities, and resistance to protein adsorption, making them promising candidates for a wide range of applications, including drug delivery, oil production inhibitors, and water purification membranes. This study reports the synthesis and characterization of zwitterionic monomers and polymers through the modification of linear, vinyl, and aromatic heterocyclic functional groups via reaction with 1,3-propanesultone. Four zwitterionic polymers with varying molecular structures-ranging from linear to five and six membered ring systems-were synthesized: poly(sulfobetaine methacrylamide) (pSBMAm), poly(sulfobetaine-1-vinylimidazole) (pSB1VI), poly(sulfobetaine-2-vinylpyridine) (pSB2VP), and poly(sulfobetaine-4-vinylpyridine) (pSB4VP).

View Article and Find Full Text PDF

Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.

View Article and Find Full Text PDF

A Smart mRNA-Initiated Theranostic Multi-shRNA Nanofactory for Precise and Efficient Cancer Gene Therapy.

Adv Healthc Mater

January 2025

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China.

Despite the significant potential of short hairpin RNA (shRNA)-mediated gene therapy for various diseases, the clinical success of cancer treatment remains poor, partly because of low selectivity and low efficiency. In this study, an mRNA-initiated autonomous multi-shRNA nanofactory (RNF@CM) is designed for in vivo amplification imaging and precise cancer treatment. The RNF@CM consists of a gold nanoparticle core, an interlayer of two types of three-stranded DNA/RNA hybrid probes, one of which is bound to aptamer-inhibited DNA polymerases, and an outer layer of the cancer cell membrane.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!