Background: Randomization is the foundation of any clinical trial involving treatment comparison. It helps mitigate selection bias, promotes similarity of treatment groups with respect to important known and unknown confounders, and contributes to the validity of statistical tests. Various restricted randomization procedures with different probabilistic structures and different statistical properties are available. The goal of this paper is to present a systematic roadmap for the choice and application of a restricted randomization procedure in a clinical trial.
Methods: We survey available restricted randomization procedures for sequential allocation of subjects in a randomized, comparative, parallel group clinical trial with equal (1:1) allocation. We explore statistical properties of these procedures, including balance/randomness tradeoff, type I error rate and power. We perform head-to-head comparisons of different procedures through simulation under various experimental scenarios, including cases when common model assumptions are violated. We also provide some real-life clinical trial examples to illustrate the thinking process for selecting a randomization procedure for implementation in practice.
Results: Restricted randomization procedures targeting 1:1 allocation vary in the degree of balance/randomness they induce, and more importantly, they vary in terms of validity and efficiency of statistical inference when common model assumptions are violated (e.g. when outcomes are affected by a linear time trend; measurement error distribution is misspecified; or selection bias is introduced in the experiment). Some procedures are more robust than others. Covariate-adjusted analysis may be essential to ensure validity of the results. Special considerations are required when selecting a randomization procedure for a clinical trial with very small sample size.
Conclusions: The choice of randomization design, data analytic technique (parametric or nonparametric), and analysis strategy (randomization-based or population model-based) are all very important considerations. Randomization-based tests are robust and valid alternatives to likelihood-based tests and should be considered more frequently by clinical investigators.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366748 | PMC |
http://dx.doi.org/10.1186/s12874-021-01303-z | DOI Listing |
J Med Internet Res
January 2025
Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, China.
Background: Acute kidney injury (AKI) is a common complication in hospitalized older patients, associated with increased morbidity, mortality, and health care costs. Major adverse kidney events within 30 days (MAKE30), a composite of death, new renal replacement therapy, or persistent renal dysfunction, has been recommended as a patient-centered endpoint for clinical trials involving AKI.
Objective: This study aimed to develop and validate a machine learning-based model to predict MAKE30 in hospitalized older patients with AKI.
J Neurosurg Spine
January 2025
6Presbyterian St. Lukes Medical Center, Denver, Colorado.
Objective: Malalignment following cervical spine deformity (CSD) surgery can negatively impact outcomes and increase complications. Despite the growing ability to plan alignment, it remains unclear whether preoperative goals are achieved with surgery. The objective of this study was to assess how good surgeons are at achieving their preoperative goal alignment following CSD surgery.
View Article and Find Full Text PDFJ Med Internet Res
January 2025
College of Public Health, The Ohio State University, Columbus, OH, United States.
Background: Young gay, bisexual, and other men who have sex with men have been referred to as a "hard-to-reach" or "hidden" community in terms of recruiting for research studies. With widespread internet use among this group and young adults in general, web-based avenues represent an important approach for reaching and recruiting members of this community. However, little is known about how participants recruited from various web-based sources may differ from one another.
View Article and Find Full Text PDFNeurol Neuroimmunol Neuroinflamm
March 2025
Department of Neurology with Institute of Translational Neurology, University Hospital 4 Münster, Germany.
Background And Objectives: Levels of activated complement proteins in the CSF are increased in people with multiple sclerosis (MS) and are associated with clinical disease severity. In this study, we determined whether complement activation profiles track with quantitative MRI metrics and liquid biomarkers indicative of disease activity and progression.
Methods: Complement components and activation products (Factor H and I, C1q, C3, C4, C5, Ba, Bb, C3a, C4a, C5a, and sC5b-9) and liquid biomarkers (neurofilament light chain, glial fibrillary acidic protein [GFAP], CXCL-13, CXCL-9, and IL-12b) were quantified in the CSF of 112 patients with clinically isolated syndromes and 127 patients with MS; longitudinal MRIs according to a standardized protocol of the Swiss MS cohort were assessed.
J Clin Neurophysiol
January 2025
Department of Neurology, Washington University in St Louis, St. Louis, MO.
Purpose: Continuous EEG (cEEG) monitoring is increasingly used in the management of neonates with seizures. There remains debate on what clinically relevant information can be gained from cEEG in neonates with suspected seizures, at high risk for seizures, or with definite seizures, as well as the use of cEEG for prognosis in a variety of conditions. In this guideline, we address these questions using American Clinical Neurophysiology Society structured methodology for clinical guideline development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!