Carotenoids are natural pigments that present several bioactive properties, including antioxidant, anticarcinogenic and provitamin A activities. However, these compounds are susceptible to degradation when exposed to a number of conditions (e.g. light, heat, oxygen), leading to loss of benefits and hampering their application in food products. Their hydrophobicity also makes incorporation into water-based foods more difficult. Microencapsulation techniques have been applied for decades to provide stability to carotenoid-rich extracts under typical conditions of processing and storage of foods, besides offering several other advantages to the use and application of these materials. This work reviews the recent advances in the microencapsulation of carotenoid-rich extracts, oils and oleoresins from varying sources, evidencing the technologies applied to encapsulate these materials, the effects of encapsulation on the obtained particles, and the impact of such processes on the bioaccessibility and release profile of carotenoids from microparticles. Moreover, recent applications of carotenoid-rich microparticles in food products are discussed. Most of the applied processes were effective in improving different aspects of the encapsulated materials, especially the stability of carotenoids during storage, resulting in microparticles with promising properties for future applications in food products. However, the lack of information about the effects of microencapsulation on carotenoids during processing of model foods, the sensory acceptance of enriched food products and the bioaccessibility and bioavailability of microencapsulated carotenoids reveals gaps that should be explored in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2021.110571 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!