Recent progress in the preparation, chemical interactions and applications of biocompatible polysaccharide-protein nanogel carriers.

Food Res Int

Shaanxi Engineering Laboratory for Food Green Processing Safety Control, Xi'an Key Laboratory of Characteristic Fruit Storage and Preservation, Engineering Research Center of High Value Utilization of Western Fruit Resources and College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, Shaanxi 710119, China. Electronic address:

Published: September 2021

Nanogel carriers are rapidly emerged as a major delivery strategy in the fields of food, biology and medicine for small particle size, excellent solubility, high loading, and controlled release. Natural polysaccharides and proteins are selected for the preparation of biocompatible, biodegradable, low toxic, and less immunogenic nanogels. Different polysaccharides and proteins form complex nanogels through different interaction forces (e.g., electrostatic interaction and hydrophobic interaction). The present review pursues three aims: 1) to introduce several well-known dietary polysaccharides (chitosan, dextran and alginate) and proteins (whey protein and lysozyme); 2) to discuss the types, preparation methods, chemical interactions and properties of various biocompatible complex carriers; 3) to present the application and prospect of polysaccharide-protein complex in bioactive ingredient delivery, nutrient encapsulation and flavor protection. We expect that the integration with nano-intelligent technology will improve the functional ingredient loading, recognition specificity and controlled release capabilities of polysaccharide-protein nanocomposites to generate new intelligent nanogels in the field of food industry in the future.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2021.110564DOI Listing

Publication Analysis

Top Keywords

chemical interactions
8
nanogel carriers
8
controlled release
8
polysaccharides proteins
8
progress preparation
4
preparation chemical
4
interactions applications
4
applications biocompatible
4
biocompatible polysaccharide-protein
4
polysaccharide-protein nanogel
4

Similar Publications

Globally, the incidence and death rates associated with cancer persist in rising, despite considerable advancements in cancer therapy. Although some malignancies are manageable by a mix of chemotherapy, surgery, radiation, and targeted therapy, most malignant tumors either exhibit poor responsiveness to early identification or endure post-treatment survival. The prognosis for prostate cancer (PCa) is unfavorable since it is a perilous and lethal malignancy.

View Article and Find Full Text PDF

Unlocking the Key to Photocatalytic Hydrogen Production Using Electronic Mediators for Z-Scheme Water Splitting.

J Am Chem Soc

January 2025

State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, PR China.

A prevalent challenge in particulate photocatalytic water splitting lies in the fact that while numerous photocatalysts exhibit outstanding hydrogen evolution reaction (HER) activity in organic sacrificial reagents, their performance diminishes markedly in a Z-scheme water splitting system using electronic mediators. This underlying reason remains undefined, posing a long-standing issue in photocatalytic water splitting. Herein, we unveiled that the primary reason for the decreased HER activity in electronic mediators is due to the strong adsorption of shuttle ions on cocatalyst surfaces, which inhibits the initial proton reduction and results in a severe backward reaction of the oxidized shuttle ions.

View Article and Find Full Text PDF

The strong solid-liquid interaction leads to the complicated occurrence characteristics of shale oil. However, the solid-liquid interface interaction and its controls of the occurrence state of shale oil are poorly understood on the molecular scale. In this work, the adsorption behavior and occurrence state of shale oil in pores of organic/inorganic matter under reservoir conditions were investigated by using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations.

View Article and Find Full Text PDF

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Unveiling of Hydrogen Spillover Mechanisms on Tungsten Oxide Surfaces.

J Am Chem Soc

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

Hydrogen spillover is an important process in catalytic hydrogenation reactions, facilitating H activation and modulating surface chemistry of reducible oxide catalysts. This study focuses on the unveiling of platinum-induced hydrogen spillover on monoclinic tungsten trioxide (γ-WO), employing ambient pressure X-ray photoelectron spectroscopy, density functional theory calculations and microkinetic modeling to investigate the dynamic evolution of surface states at varied temperatures. At room temperature, hydrogen spillover results in the formation of W and hydrogen intermediates (hydroxyl species and adsorbed water), facilitated by Pt metal clusters.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!