Effects of enzyme-assisted extraction on the profile and bioaccessibility of isoflavones from soybean flour.

Food Res Int

Department of Food Science and Technology, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States; Department of Biological and Agricultural Engineering, University of California, Davis, One Shields Avenue, Davis, CA 95616, United States. Electronic address:

Published: September 2021

The effects of enzymatic extraction strategies on extractability, bioconversion, and bioaccessibility of biologically active isoflavone aglycones, total phenolic content, and antioxidant activity of aqueous extracts from full-fat soy flour were evaluated. Protease, tannase, and cellulase enzymes were used individually or in combination. Except for the protease treatment, all enzymatic treatments increased the extraction of biologically active isoflavones (daidzein and genistein) compared with the control. The use of a mixture of protease, tannase, and cellulase resulted in increased extractability and/or bioconversion of aglycones from soy flour, indicating a synergistic effect amongst the enzymes. Daidzein and genistein concentrations increased from 29.0 to 158.2 μg/g and from 27.0 to 156.5 μg/g (compared to the control), respectively. Furthermore, enzymatic extraction followed by in vitro gastrointestinal digestion significantly increased the bioaccessibility of isoflavone aglycones, total phenolic content (by 22-45%), and antioxidant activity (by 15-22%) of the extracts. These results demonstrate that enzyme selection is an efficient strategy to maximize the extraction, bioconversion, and bioaccessibility of bioactive isoflavones from soy flour, which could contribute to health benefits associated with the consumption of soy-rich products.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodres.2021.110474DOI Listing

Publication Analysis

Top Keywords

soy flour
12
enzymatic extraction
8
bioconversion bioaccessibility
8
biologically active
8
isoflavone aglycones
8
aglycones total
8
total phenolic
8
phenolic content
8
antioxidant activity
8
protease tannase
8

Similar Publications

Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.

Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.

View Article and Find Full Text PDF

Pinto beans, an underutilized legume, are abundant in protein content and contain a variety of beneficial phytonutrients. However, the commonly used protein extraction method, alkaline extraction, is associated with several drawbacks. These drawbacks include low extraction yield and purity as well as the production of large amounts of wastewater that can lead to environmental hazards.

View Article and Find Full Text PDF

Grain-based gluten-free cookies are often nutritionally inferior owing to their low protein content. This study aimed to enhance the nutritional value of gluten-free cookies by incorporating soy flour and to investigate the effects of different types of modified soy flour on the properties of gluten-free dough and cookies. Results indicate that all types of modified soy flour significantly decreased water absorption capacity (p < 0.

View Article and Find Full Text PDF

Consumer interest in meat and dairy alternatives drives demand for plant-based protein ingredients. While soy and gluten dominate the market, there is a trend to explore alternative crops for functional ingredient production. The multitude of ingredients poses challenges for food manufacturers in selecting the right protein.

View Article and Find Full Text PDF

Enterotoxigenic Escherichia coli (ETEC)-mediated diarrhea can be mitigated by inhibiting bacterial adhesion to intestinal surface. Some lactic acid bacteria (LAB) produce exopolysaccharides (EPS) that can inhibit ETEC adhesion. In this study, we fermented soy flour-based dough (SoyD) with EPS-producing LAB strains Pediococcus pentosaceus TL (PpTL), Leuconostoc citreum TR (LcTR), Leuconostoc mesenteroides WA (LmWA) and L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!