Adding nanoparticles in a drilling fluid can aid in the sealing of the nanopores in the borehole wall rock and the mud cake; in this way, the filtrate loss of the drilling fluid can be reduced and the borehole wall is stabilized. In this work, the spectrophotometric method was used to study the effect of dispersants on calcium carbonate nanoparticles. The best dispersion effect was achieved at cetyltrimethyl ammonium bromide (CTAB) concentration of 4 wt%, dispersing time of 45 min, pH value of 8 and stirring speed of 900 rpm. The structure analysis showed that the adsorption layer was formed on the surface of calcium carbonate nanoparticles after CTAB modification, and no new crystalline compounds appeared. Under these optimized dispersing conditions, aggregation was prevented as manifested by the dramatically decreased average particle size of calcium carbonate nanoparticles while the surface hydrophilicity and Zeta potential of calcium carbonate nanoparticles both increased. Furthermore, we showed that a drilling fluid incorporating such well dispersed calcium carbonate nanoparticles exhibit decreased filter loss and thus better performance in sealing compared to the calcium carbonate nanoparticles without dispersants.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ac1dd2DOI Listing

Publication Analysis

Top Keywords

calcium carbonate
28
carbonate nanoparticles
28
drilling fluid
16
filter loss
8
nanoparticles
8
borehole wall
8
calcium
7
carbonate
7
dispersive filter
4
loss performance
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!