To help mitigate the impacts of climate change, many nature-based solutions are being explored. These solutions involve protection and restoration of ecosystems that serve as efficient carbon sinks, including vegetated coastal ecosystems (VCEs: tidal marshes, mangrove forests, and seagrass meadows) also known as 'Blue Carbon' ecosystems. In fact, many nations are seeking to manage VCEs to help meet their climate change mitigation targets through Nationally Determined Contributions (NDCs). However, incorporation of VCEs into NDCs requires national-scale estimates of contemporary and future blue carbon storage, which has not yet been achieved. Here we address this challenge using machine learning approaches to reliably map (with 62-72% accuracy) soil carbon stocks in VCEs based on geospatial data (topography, geomorphology, climate, and anthropogenic impacts), using Australia as a case study. The resulting maps of soil carbon stocks showed that there is a total of 951 Tg (±65 Tg) of carbon stock within Australian VCEs. Strong relationships between soil carbon stocks and climatic conditions (temperature, rainfall, solar radiation) allowed us to project future changes in carbon storage across all RCP scenarios for the years 2050 and 2090 to determine changes in environmental suitability for soil carbon stocks. Results show that soil carbon stocks in mangrove/tidal marsh ecosystems are likely to predominantly experience declines in carbon stocks under predicted climate change scenarios (19% of ecosystems area is predicted to have an increase in soil carbon stocks, while 38% of ecosystems area is predicted to have a decrease in soil carbon stocks), but a majority of seagrass area is likely to have increased soil carbon stocks (56% increase, 7% decrease). This approach is effective for developing robust national blue carbon inventories and revealing the capacity for blue carbon to help meet NDCs. The resulting spatially-explicit maps can also be used to pinpoint areas for successful blue carbon projects both now and in the future.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.149573 | DOI Listing |
Data Brief
February 2025
UMR SAS, INRAE, Institut Agro, 35 000 Rennes, France.
Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Addis Ababa Science and Technology University, Addis Ababa, 16417, Ethiopia.
Many approaches have been implemented in order to reduce the emissions of particular pollutants without compromising engine performance. Cotton and castor mixed seed oil was chosen for the current study due to their distinct fatty acid composition and potential as a feedstock for bio-additives. Three fuel samples-99 % diesel and 1 % blended fuel (cottonseed oil + castor seed oil), 99.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Jinghong 666303, China.
Ecosystem functioning and management are primarily concerned with addressing climate change and biodiversity loss, which are closely linked to carbon stock and species diversity. This research aimed to quantify forest understory (shrub and herb) diversity, tree biomass and carbon sequestration in the Binsar Wildlife Sanctuary. Using random sampling methods, data were gathered from six distinct forest communities.
View Article and Find Full Text PDFPlants (Basel)
January 2025
Voke Branch, Lithuanian Research Centre for Agriculture and Forestry, Zalioji 2, LT-02232 Vilnius, Lithuania.
Grasses can sustain soil functions despite nutrient depletion, which can have serious consequences for soil processes and ecosystem services. This paper summarizes the results of the long-term experiment (1995-2024) carried out in within a temperate climate zone, focusing on the productivity of natural and managed grasslands; their succession changes over time, and so do the effects on soil chemical properties, and soil organic carbon (SOC) sequestration. The results indicated that two land uses-abandoned land (AL) and grassland fertilized with mineral fertilizers (MGf)-can be effectively applied to prevent soil degradation.
View Article and Find Full Text PDFPLoS One
January 2025
College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, China.
Influenced by urban expansion, population growth, and various socio-economic activities, land use in the Yangtze River Delta (YRD) area has undergone prominent changes. Modifications in land use have resulted in adjustments to ecological structures, leading to subsequent fluctuations in carbon storage. This study focuses on YRD region and analyzes the characteristics of land use changes in the area using land use data from 2000 to 2020, with a 10-year interval.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!