Retrieving dynamics of the surface water extent in the upper reach of Yellow River.

Sci Total Environ

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish Center, University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Published: December 2021

Multi-time scale surface water extent (SWE) dynamics are very important to understand climate change impacts on water resources. With Landsat 5/7/8 images and Google Earth Engine (GEE), an improved threshold-based water extraction algorithm and a novel surface water gaps (SWGs) interpolation method based on historical water frequency were applied to build surface water area (SWA, namely SWE without ice) and water body area (WBA, namely SWE with ice) monthly (January 2001-December 2019) and annual (1986-2019) time series in the upper reaches of the Yellow River (UYR). The Mann-Kendall test was used to analyse SWE trends, and the ridge regression was performed to figure out the relative contributions of meteorological factors to SWE dynamics. The pixels with modified normalized difference water index (MNDWI) higher than normalized difference vegetation index (NDVI) or enhanced vegetation index (EVI) were identified as SWE. The mean relative error (MRE) of the SWGs interpolation results was below 10%. At the annual scale, the average SWA and number of lakes over 1 ha showed significant upward trends of 4.4 km yr and 7.53 yr, respectively. The monthly WBA increased in summer and autumn while decreased in spring and winter. The maximum freezing and thawing ratios were 53.74% in December and 37.32% in May, respectively. Attribution analysis showed that precipitation and wind speed were the foremost factors dominating the dynamics of annual SWA and monthly WBA, respectively. Our findings confirmed that climatic changes have altered the dynamics of water bodies in the UYR.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.149348DOI Listing

Publication Analysis

Top Keywords

surface water
16
water
10
water extent
8
yellow river
8
swe dynamics
8
swgs interpolation
8
swe ice
8
normalized difference
8
monthly wba
8
swe
6

Similar Publications

In this research, the effect of seed halopriming with plasma activated water (PAW) on wheat germination parameters have been studied. Response surface methodology was used to investigate the effect of three factors including: 1) type of water (distilled water, 0.2 and 0.

View Article and Find Full Text PDF

Surface water plays a vital role in the spread of infectious diseases. Information on the spatial and temporal dynamics of surface water availability is thus critical to understanding, monitoring and forecasting disease outbreaks. Before the launch of Sentinel-1 Synthetic Aperture Radar (SAR) missions, surface water availability has been captured at various spatial scales through approaches based on optical remote sensing data.

View Article and Find Full Text PDF

X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...

View Article and Find Full Text PDF

Chemical modification of naturally derived glycosaminoglycans (GAGs) expands their potential utility for applications in soft tissue repair and regenerative medicine. Here we report the preparation of a novel crosslinked chondroitin sulfate (~200 to 2000 kilodaltons) that is both soluble in aqueous solution and microfilterable. We refer to these materials as "SuperGAGs.

View Article and Find Full Text PDF

Vegetation-climate feedbacks across scales.

Ann N Y Acad Sci

January 2025

Institute for Earth System Science and Remote Sensing, Leipzig University, Leipzig, Germany.

Vegetation is often viewed as a consequence of long-term climate conditions. However, vegetation itself plays a fundamental role in shaping Earth's climate by regulating the energy, water, and biogeochemical cycles across terrestrial landscapes. It exerts influence by consuming water resources through transpiration and interception, lowering atmospheric CO concentration, altering surface roughness, and controlling net radiation and its partitioning into sensible and latent heat fluxes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!