Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Environmental heavy metal pollution has become a serious problem in recent years. Therefore, our study investigated seven heavy metal-contaminated mangroves (Beihai, Fangchenggang, Hainan, Hongkong, Shenzhen, Yunxiao, and Zhanjiang) in southern China, and found that they were particularly polluted with Zn and Pb. These heavy metals were mainly distributed in the surface sediments of the mangroves. Among these seven mangroves, the Shenzhen mangrove was the most polluted site, whereas the Beihai mangrove was the least polluted. Moreover, the bacterial communities in the mangroves were significantly associated with heavy metal contamination. For instance, Fusibacter was significantly correlated with Pb, Zn, Cu, Co, Ni, Cd, and Ag (P < 0.05, R = -0.47). Syntrophorhabdus was also significantly correlated with heavy metals (P < 0.05, R = 0.63). Furthermore, Geo-Chip analyses were conducted to demonstrate the involvement of many functional genes in heavy metal transport, particularly Ni transport. Our results also demonstrated that the heavy metals could be transported by various bacteria. For example, Pseudomonas and Burkholderia were involved in various heavy metal transportation mechanisms, particularly for Ni and Zn, suggesting that these bacteria could be used for heavy metal remediation. Therefore, our study provides insights into the interactions between bacterial communities and heavy metals, which could enable the development of novel mangrove protection strategies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112846 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!