A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Pt/MnO for toluene mineralization via ozonation catalysis at low temperature: SMSI optimization of surface oxygen species. | LitMetric

Pt/MnO for toluene mineralization via ozonation catalysis at low temperature: SMSI optimization of surface oxygen species.

Chemosphere

School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou, 510006, China; National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangzhou, 510006, China.

Published: January 2022

The problem of deep oxidation of low concentrations of VOCs in industrial tail gas is exceptionally urgent. The preparation of VOCs ozonation catalyst with a high mineralization rate is still a challenge. In this paper, manganese oxide carriers with different morphologies were synthesized by simple methods and used to catalyze ozone mineralization of toluene after loading Pt nanoparticles efficiently. The conversion of toluene over Pt/MnO-T catalyst was more than 98 % at ambient temperature, and the mineralization rate of toluene was close to 100 % at 70 °C. Through a variety of characterization methods, the strong metal-support interaction (SMSI) between Pt nanoparticles and carriers was successfully constructed. It was found that SMSI successfully optimized the surface oxygen species and oxygen migration ability of the catalyst, and then realized the high degree of mineralization of toluene at low temperature. This paper guides the subsequent development of Pt-Mn catalysts for catalytic organic pollutants ozonation with high activity.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2021.131754DOI Listing

Publication Analysis

Top Keywords

low temperature
8
surface oxygen
8
oxygen species
8
mineralization rate
8
mineralization toluene
8
mineralization
5
pt/mno toluene
4
toluene mineralization
4
mineralization ozonation
4
ozonation catalysis
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!