Calibration-free pTx of the human heart at 7T via 3D universal pulses.

Magn Reson Med

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Published: January 2022

Purpose: MRI at ultra-high fields in the human body is highly challenging and requires lengthy calibration times to compensate for spatially heterogeneous profiles. This study investigates the feasibility of using pre-computed universal pulses for calibration-free homogeneous 3D flip angle distribution in the human heart at 7T.

Methods: Twenty-two channel-wise 3D data sets were acquired under free-breathing in 19 subjects to generate a library for an offline universal pulse (UP) design (group 1: 12 males [M] and 7 females [F], 21-66 years, 19.8-28.3 kg/m ). Three of these subjects (2M/1F, 21-33 years, 20.8-23.6 kg/m ) were re-scanned on different days. A 4kT-points UP optimized for the 22 channel-wise 3D data sets in group 1 (UP22-4kT) is proposed and applied at 7T in 9 new and unseen subjects (group 2: 4M/5F, 25-56 years, 19.5-35.3 kg/m ). Multiple tailored and universal static and dynamic parallel-transmit (pTx) pulses were designed and evaluated for different permutations of the data sets in group 1 and 2.

Results: The proposed UP22-4kT provides low variation in all subjects, seen and unseen, without severe signal drops. Experimental data at 7T acquired with UP22-4kT shows comparable image quality as data acquired with tailored-4kT pulses and demonstrates successful calibration-free pTx of the human heart.

Conclusion: UP22-4kT allows for calibration-free homogeneous flip angle distributions across the human heart at 7T. Large inter-subject variations because of sex, age, and body mass index are well tolerated. The proposed universal pulse removes the need for lengthy (10-15 min) calibration scans and therefore has the potential to bring body imaging at 7T closer to the clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.28952DOI Listing

Publication Analysis

Top Keywords

human heart
12
data sets
12
calibration-free ptx
8
ptx human
8
universal pulses
8
calibration-free homogeneous
8
homogeneous flip
8
flip angle
8
channel-wise data
8
universal pulse
8

Similar Publications

Lipid Lowering Therapy Utilization and Lipid Goal Attainment in Women.

Curr Atheroscler Rep

January 2025

Department of Internal Medicine, Erasmus MC Cardiovascular Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands.

Purpose Of Review: The purpose of this review is to provide an overview of the current status of lipid-lowering therapy utilization and lipid goal attainment in women. We focus on lipid-lowering therapy in individuals with and without established atherosclerotic cardiovascular disease, as well as familial hypercholesterolemia. Additionally, this review aims to explore the underlying mechanisms driving these sex differences and to identify existing knowledge gaps in this area.

View Article and Find Full Text PDF

Swine are increasingly utilized in cardiovascular research due to their anatomical and physiological similarities to humans, particularly for studying diastolic dysfunction. While MRI offers excellent structural imaging, echocardiography provides superior real-time assessment of diastolic parameters. To address the lack of standardized methods and reduce variability across studies, we present a comprehensive guide for performing echocardiography in Yorkshire pigs, detailing anatomical considerations, equipment requirements, and technical approaches.

View Article and Find Full Text PDF

Context: The impacts of elevated ketone body levels on cardiac function and hemodynamics in patients with heart failure (HF) remain unclear.

Objective: The effects of ketone intervention on these parameters in patients with HF were evaluated quantitatively in this meta-analysis.

Data Sources: We searched the PubMed, Cochrane Library, and Embase databases for relevant studies published from inception to April 13, 2024.

View Article and Find Full Text PDF

Use of AI in Cardiac CT and MRI: A Scientific Statement from the ESCR, EuSoMII, NASCI, SCCT, SCMR, SIIM, and RSNA.

Radiology

January 2025

From the Department of Radiology, University of Washington, UW Medical Center-Montlake, Seattle, Wash (D.M.); Department of Radiology, OncoRad/Tumor Imaging Metrics Core (TIMC), University of Washington, Seattle, Wash (D.M.); Department of Radiology and Imaging Sciences, Emory University, Atlanta, Ga (M.v.A.); Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, the Netherlands (M.H.); Department of Radiology, Mayo Clinic, Rochester, Minn (T.L., E.E.W.); Departments of Cardiology and Radiology, Royal Brompton Hospital, London, United Kingdom (E.D.N.); School of Biomedical Engineering and Imaging Sciences, King's College, London, United Kingdom (E.D.N.); Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Ill (B.D.A.); Department of Radiology, University of Cagliari, Cagliari, Italy (L.S.); Department of Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1 Postbus 30 001, 9700 RB Groningen, the Netherlands (R.V.); Department of Medical Imaging, University Medical Imaging Toronto, University of Toronto, Toronto, Ontario, Canada (K.H.); and Toronto General Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada (K.H.).

Artificial intelligence (AI) offers promising solutions for many steps of the cardiac imaging workflow, from patient and test selection through image acquisition, reconstruction, and interpretation, extending to prognostication and reporting. Despite the development of many cardiac imaging AI algorithms, AI tools are at various stages of development and face challenges for clinical implementation. This scientific statement, endorsed by several societies in the field, provides an overview of the current landscape and challenges of AI applications in cardiac CT and MRI.

View Article and Find Full Text PDF

Background: Some adult transplant surgeons consider transplant to be contraindicated in patients receiving palliative care (PC). Little is known about pediatric transplant surgeons' attitudes toward PC. We sought to ascertain pediatric kidney transplant surgeons' perspectives regarding the routine integration of PC for children with chronic kidney disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!