Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Digital twins (DT) are emerging as an extremely promising paradigm for run-time modelling and performability prediction of cyber-physical systems (CPS) in various domains. Although several different definitions and industrial applications of DT exist, ranging from purely visual three-dimensional models to predictive maintenance tools, in this paper, we focus on data-driven evaluation and prediction of critical dependability attributes such as safety. To that end, we introduce a conceptual framework based on autonomic systems to host DT run-time models based on a structured and systematic approach. We argue that the convergence between DT and self-adaptation is the key to building smarter, resilient and trustworthy CPS that can self-monitor, self-diagnose and-ultimately-self-heal. The conceptual framework eases dependability assessment, which is essential for the certification of autonomous CPS operating with artificial intelligence and machine learning in critical applications. This article is part of the theme issue 'Towards symbiotic autonomous systems'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8366911 | PMC |
http://dx.doi.org/10.1098/rsta.2020.0369 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!