Phospholipid Membrane Formation Templated by Coacervate Droplets.

Langmuir

Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: August 2021

We report the formation of coacervate-supported phospholipid membranes by hydrating a dried lipid film in the presence of coacervate droplets. Coacervate-supported membranes were characterized by fluorescence imaging, polarization, fluorescence recovery after photobleaching of labeled lipids, lipid quenching experiments, and solute uptake experiments. Our findings are consistent with the presence of lipid membranes around the coacervates, with many droplets fully coated by what appear to be continuous lipid bilayers. In contrast to traditional giant lipid vesicles formed by gentle hydration in the absence of coacervates, the coacervate-templated membrane vesicles are more uniform in size, shape, and apparent lamellarity. Due to their fully coacervate model cytoplasm, these simple artificial cells are macromolecularly crowded and can be easily pre-loaded with high concentrations of proteins or nucleic acids. Within the same population, in addition to coacervate droplets having intact lipid membrane coatings, other coacervate droplets are coated with membranes having defects or pores that permit solute entry, and some are coated with multilayered membranes. Membranes surrounding protein-based coacervate droplets provided protection from a protease added to the external solution. The simplicity of producing artificial cells having a coacervate model cytoplasm surrounded by a model membrane is at the same time interesting as a potential mechanism for prebiotic protocell formation and appealing for biotechnology. We anticipate that such structures could serve as a new type of model system for understanding interactions between intracellular phases and cell or organelle membranes, which are implicated in a growing number of processes ranging from neurotransmission to signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.langmuir.1c01562DOI Listing

Publication Analysis

Top Keywords

coacervate droplets
20
coacervate model
8
model cytoplasm
8
artificial cells
8
coacervate
7
membranes
7
droplets
6
lipid
6
phospholipid membrane
4
membrane formation
4

Similar Publications

Coacervate vesicles assembled by liquid-liquid phase separation improve delivery of biopharmaceuticals.

Nat Chem

January 2025

State Key Laboratory of Advanced Drug Delivery and Release Systems, Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.

Vesicles play critical roles in cellular materials storage and signal transportation, even in the formation of organelles and cells. Natural vesicles are composed of a lipid layer that forms a membrane for the enclosure of substances inside. Here we report a coacervate vesicle formed by the liquid-liquid phase separation of cholesterol-modified DNA and histones.

View Article and Find Full Text PDF

Fluidic Membrane-Bound Protocells Enabling Versatile Assembly of Functional Nanomaterials for Biomedical Applications.

ACS Nano

December 2024

Department of Biomedical Engineering, City University of Hong Kong, Y6700, 6/F, Yellow Zone, Yeung Kin Man Academic Building, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China.

The development of membrane-bound protocells, which process cascade biochemical reactions in distinct microcompartments, marks a significant advancement in soft systems. However, many synthesized protocells with cell membrane-like structures are prone to rupturing in biological environments and are challenging to functionalize, limiting their biomedical applications. In this study, we explore the liquid-liquid phase separation of tannic acid (TA) and polyethylene glycol (PEG) to form coacervate droplets.

View Article and Find Full Text PDF
Article Synopsis
  • * Recent advances involve using both synthetic and natural molecules to create hierarchical chemical systems that mimic life-like properties through coacervation.
  • * The review discusses the materials used in coacervation, their chemical structure's impact on behavior, and the applications of coacervates in creating cell-like microreactors that facilitate controlled chemical reactions in aqueous environments.
View Article and Find Full Text PDF

Phase separation and phase transitions pervade the biological domain, where proteins and RNA engage in liquid-liquid phase separation (LLPS), forming liquid-like membraneless organelles. The misregulation or dysfunction of these proteins culminates in the formation of solid aggregates a liquid-to-solid transition, leading to pathogenic conditions. To decipher the underlying mechanisms, synthetic LLPS has been examined through complex coacervate formation from charged polymers.

View Article and Find Full Text PDF

Synthetic Biomolecular Condensates: Phase-Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential.

Angew Chem Int Ed Engl

November 2024

MPIP: Max-Planck-Institut fur Polymerforschung, Department of physical chemistry, GERMANY.

Liquid-liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase-separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!