Until recently, most studies of heart failure (HF) focused on body fluid dynamics through control of the sodium and water balance in the body. Chloride has remained largely ignored in the medical literature, and in clinical practice, chloride is generally considered as an afterthought to the better-known electrolytes of sodium and potassium. In recent years, however, the important role of chloride in the distribution of body fluid has emerged in the field of HF pathophysiology. Investigation of HF pathophysiology according to the dynamics of serum chloride is rational considering that chloride is an established key electrolyte for tubulo-glomerular feedback in the kidney and a possible regulatory electrolyte for body fluid distribution. The present review provides a historical overview of HF pathophysiology, followed by descriptions of the recent attention to the electrolyte chloride in the cardiovascular field, the known role of chloride in the human body, and recent new findings regarding the role of chloride leading to the proposed 'chloride theory' hypothesis in HF pathophysiology. Next, vascular and organ congestion in HF is discussed, and finally, a new classification and potential therapeutic strategy are proposed according to the 'chloride theory'.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8555043 | PMC |
http://dx.doi.org/10.1007/s40119-021-00238-2 | DOI Listing |
Crit Care Res Pract
December 2024
Gastro-Intestinal and HPB Services, Department of Surgical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India.
Cytoreductive surgery with hyperthermic intraperitoneal chemotherapy (CRS-HIPEC) has become standard treatment for peritoneal cancers and metastases, significantly enhancing survival rates. This study evaluated the relationship between tumor burden, hemodynamic management, and postoperative outcomes after CRS-HIPEC. This study included 203 patients undergoing CRS-HIPEC.
View Article and Find Full Text PDFiScience
November 2024
Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China.
Inflammatory bowel disease (IBD) presents a range of extraintestinal manifestations, notably including oral cavity involvement. The mechanisms underlying oral-gut crosstalk in IBD are not fully understood. Exosomes, found in various body fluids such as saliva, play an unclear role in IBD that requires further exploration.
View Article and Find Full Text PDFJ Inflamm Res
December 2024
Rheumatology Department, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People's Republic of China.
Lactic acid (LA) is an essential glycolytic metabolite and energy source in the body, which is present in high levels in the synovial fluid of patients with rheumatoid arthritis (RA) and is a reliable indicator for identifying inflammatory arthritis. LA not only acts as an inflammatory amplifier in RA, recent studies have found that novel posttranslational modification (PTM) lactylation mediated by LA may also play a key role in RA. Single-cell sequencing showed that the RA lactylation score of patients with RA was significantly increased, and core lactylation-promoting genes, including NDUFB3, NGLY1, and other genes, were found to be potential biomarkers of RA.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Medicine and Aging Sciences, Gabriele d'Annunzio University of Chieti and Pescara, Chieti, Italy.
Purpose: This study aimed to assess hydration status before and after training using the bioelectrical impedance vector analysis (BIVA) method.
Design: Pre-post quasi-experimental designs.
Method: Twenty-four young water polo players (mean age: 13.
ACS Appl Mater Interfaces
January 2025
Intelligent Polymer Research Institute, Faculty of Engineering and Information Sciences, Innovation Campus, University of Wollongong, Wollongong, NSW 2500, Australia.
Textile-based lithium-ion batteries (LIBs) are in great demand to power wearable electronics. They currently face a key safety challenge, particularly concerning mechanical abuse that could trigger thermal runaway, causing harm to individuals. Here, we report on Kevlar-fabric-based LIBs that can afford high impact tolerance while offering excellent electrochemical performance comparable to metal-foil-based cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!