Microglial activation-induced neuroinflammation is critical in the pathogenesis of neurodegenerative diseases. Activated microglia are regulated mainly by innate pattern recognition receptors (PRRs) on their surface, of which macrophage receptor with collagenous structure (Marco) is a well-characterized scavenger receptor constitutively expressed on specific subsets of macrophages, including microglia. Increasing evidence has shown that Marco is involved in the pathogenesis of a range of inflammatory processes. However, research on the role of Marco in regulating neuroinflammation has reported conflicting results. In the present study, we examined the role Marco played in triggering neuroinflammation and its underlying mechanisms. The results demonstrated that silencing the Marco gene resulted in a significantly reduced neuroinflammatory response and vice versa. α-Syn stimulation in Marco overexpressing cells induced a pronounced inflammatory response, suggesting that Marco alone could trigger an inflammatory response. We also found that TLR2 significantly promoted Marco-mediated neuroinflammation, indicating TLR2 was an important co-receptor of Marco. Knocking down the TLR2 gene in microglia and mouse substantia nigra resulted in decreased expression of Marco. Subsequent mechanistic studies showed that deleting the SRCR domain of Marco resulted in disruption of the inflammatory response and the interaction between TLR2 and Marco. This suggested that TLR2 binds directly to the SRCR domain of Marco and regulates Marco-mediated neuroinflammation. In summary, this investigation revealed that TLR2 could potentiate Marco-mediated neuroinflammation by interacting with the SRCR domain of Marco, providing a new target for inhibiting neuroinflammation in neurodegenerative diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12035-021-02463-1 | DOI Listing |
Ecotoxicol Environ Saf
December 2024
Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Public Health, Kangda College of Nanjing Medical University, Lianyungang, 320700, China. Electronic address:
Silicosis is a disease caused by prolonged exposure to silica dust. It is the most typical, rapidly progressive, and fatal form of pneumoconiosis. Currently, there is no specific medication available for the treatment of silicosis.
View Article and Find Full Text PDFNat Commun
October 2024
Structural Biology of Cells and Viruses Laboratory, The Francis Crick Institute, London, UK.
Cell surface scavenger receptors contribute to homoeostasis and the response to pathogens and products associated with damage by binding to common molecular features on a wide range of targets. Apoptosis inhibitor of macrophage (AIM/CD5L) is a soluble protein belonging to the scavenger receptor cysteine-rich (SRCR) superfamily that contributes to prevention of a wide range of diseases associated with infection, inflammation, and cancer. AIM forms complexes with IgM pentamers which helps maintain high-levels of circulating AIM in serum for subsequent activation on release from the complex.
View Article and Find Full Text PDFJ Fungi (Basel)
September 2024
Group of Immunoreceptors of the Innate and Adaptive System, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), 08036 Barcelona, Spain.
is included in the World Health Organization fungal priority pathogen list, complied to expedite improved research and public-health interventions. The limited number of available antifungal drugs, their associated toxicity, and the emergence of drug-resistant strains make the development of new therapeutic strategies mandatory. Pattern-recognition receptors (PRRs) from the host's innate immune system constitute a potential source of new antimicrobial agents.
View Article and Find Full Text PDFVet Microbiol
November 2024
Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, USA. Electronic address:
Fish Shellfish Immunol
April 2024
Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR). Terminal de Cruzeiros Do Porto de Leixões, Av. General Norton de Matos S/n, 4450-208, Matosinhos, Portugal; Instituto de Ciências Biomédicas Abel Salazar (ICBAS-UP), Universidade Do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!