This review addresses morphological changes in coronary arteries following stenting, which result from damage to the vascular wall. These changes include 1) formation of a thrombus in the site of intimal injury; 2) inflammation; 3) proliferation and migration of smooth muscle cells; 4) formation of extracellular matrix. Each of these pathological processes has specific morpho-biological features. The review shows the role of von Willebrand factor in development of early thrombosis after intimal injury, which provokes activation of the inflammatory response followed by proliferation of smooth muscle cell that synthetize the extracellular matrix. These cellular and intercellular changes are based on overexpression of TGF-β1 protein, which facilitates modulation of various types of smooth muscle cells, including contractile and secretory ones. Issues of fine regulation of cellular and intercellular interactions by apoptosis, activation of mTOR signaling molecules, and microRNA are still understudied. Dynamic changes in drug-coated stents during development of neoatherosclerosis and late thrombosis remain not elucidated. Current reports show that initial mechanisms triggering pathological regenerative and hyperplastic processes that result in coronary restenosis in the area of implanted stents may form early (first hours or days) after stenting. Most studies were performed on experimental rather than on autopsy material, which does not allow fully unbiased interpretation of obtained data. Studying dynamics of morphological and molecular changes in coronary arteries after stenting, including on autopsy material, will allow one to express an opinion on the risk of postoperative thrombosis and restenosis.

Download full-text PDF

Source
http://dx.doi.org/10.18087/cardio.2021.7.n1211DOI Listing

Publication Analysis

Top Keywords

changes coronary
12
coronary arteries
12
smooth muscle
12
arteries stenting
8
intimal injury
8
muscle cells
8
extracellular matrix
8
cellular intercellular
8
autopsy material
8
changes
6

Similar Publications

Circadian Misalignment Impacts Cardiac Autonomic Modulation in Adolescence.

Sleep

January 2025

Sleep Research & Treatment Center, Department of Psychiatry & Behavioral Health, Penn State University, College of Medicine, Hershey PA, USA.

Study Objectives: Although heart rate variability (HRV), a marker of cardiac autonomic modulation (CAM), is known to predict cardiovascular morbidity, the circadian timing of sleep (CTS) is also involved in autonomic modulation. We examined whether circadian misalignment is associated with blunted HRV in adolescents as a function of entrainment to school or on-breaks.

Methods: We evaluated 360 subjects from the Penn State Child Cohort (median 16y) who had at least 3-night at-home actigraphy (ACT), in-lab 9-h polysomnography (PSG) and 24-h Holter-monitoring heart rate variability (HRV) data.

View Article and Find Full Text PDF

Pharmacologic Management of Heart Failure with Preserved Ejection Fraction (HFpEF) in Older Adults.

Drugs Aging

January 2025

Program for the Care and Study of the Aging Heart, Department of Medicine, Weill Cornell Medicine, 420 East 70th St, New York, NY, LH-36510063, USA.

There are several pharmacologic agents that have been touted as guideline-directed medical therapy for heart failure with preserved ejection fraction (HFpEF). However, it is important to recognize that older adults with HFpEF also contend with an increased risk for adverse effects from medications due to age-related changes in pharmacokinetics and pharmacodynamics of medications, as well as the concurrence of geriatric conditions such as polypharmacy and frailty. With this review, we discuss the underlying evidence for the benefits of various treatments in HFpEF and incorporate key considerations for older adults, a subpopulation that may be at higher risk for adverse drug events.

View Article and Find Full Text PDF

Beneficial death: A substantial element of evolution?

Biogerontology

January 2025

Clinic for Heart Surgery (UMH), Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Straße 40, 06120, Halle (Saale), Germany.

If a shortened lifespan is evolutionarily advantageous, it becomes more likely that nature will strive to change it accordingly, affecting how we understand aging. Premature mortality because of aging would seem detrimental to the individual, but under what circumstances can it be of value? Based on a relative incremental increase in fitness, simulations were performed to reveal the benefit of death. This modification allows for continuous evolution in the model and establishes an optimal lifespan even under challenging conditions.

View Article and Find Full Text PDF

Prediction of pre-eclampsia using maternal hemodynamic parameters at 12 + 0 to 15 + 6 weeks.

Ultrasound Obstet Gynecol

January 2025

Department of Obstetrics and Gynaecology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, SAR, China.

Objectives: To compare the maternal hemodynamic profile at 12 + 0 to 15 + 6 weeks' gestation in women who subsequently developed pre-eclampsia (PE) and those who did not, and to assess the screening performance of maternal hemodynamic parameters for PE in combination with the Fetal Medicine Foundation (FMF) triple test, including maternal factors (MF), mean arterial pressure (MAP), uterine artery pulsatility index and placental growth factor.

Methods: This was a prospective case-control study involving Chinese women with a singleton pregnancy who underwent preterm PE screening at 11 + 0 to 13 + 6 weeks' gestation using the FMF triple test, between February 2020 and February 2023. Women identified as being at high risk (≥ 1:100) for preterm PE by the FMF triple test were matched 1:1 with women identified as low risk (< 1:100) for maternal age ± 3 years, maternal weight ± 5 kg and date of screening ± 14 days.

View Article and Find Full Text PDF

The acute response to therapeutic afterload reduction differs between heart failure with preserved (HFpEF) versus reduced ejection fraction (HFrEF), with larger left ventricular (LV) stroke work augmentation in HFrEF compared to HFpEF. This may (partially) explain the neutral effect of HFrEF-medication in HFpEF. It is unclear whether such differences in hemodynamic response persist and/or differentially trigger reverse remodeling in case of long-term afterload reduction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!