We experimentally demonstrate the temporary removal of thermal photons from a microwave mode at 1.45 GHz through its interaction with the spin-polarized triplet states of photo-excited pentacene molecules doped within a p-terphenyl crystal at room temperature. The crystal functions electromagnetically as a narrowband cryogenic load, removing photons from the otherwise room-temperature mode via stimulated absorption. The noise temperature of the microwave mode dropped to 50_{-32}^{+18} K (as directly inferred by noise-power measurements), while the metal walls of the cavity enclosing the mode remained at room temperature. Simulations based on the same system's behavior as a maser (which could be characterized more accurately) indicate the possibility of the mode's temperature sinking to ∼10 K (corresponding to ∼140 microwave photons). These observations, when combined with engineering improvements to deepen the cooling, identify the system as a narrowband yet extremely convenient platform-free of cryogenics, vacuum chambers, and strong magnets-for realizing low-noise detectors, quantum memory, and quantum-enhanced machines (such as heat engines) based on strong spin-photon coupling and entanglement at microwave frequencies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.127.053604 | DOI Listing |
Rep Prog Phys
January 2025
School of Electrical Engineering, Xi'an Jiaotong University, School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, CHINA.
Parity-time symmetry is a fundamental concept in non-Hermitian physics that has recently gained attention for its potential in engineering advanced electronic systems and achieving robust wireless power transfer even in the presence of disturbances, through the incorporation of nonlinearity. However, the current parity-time-symmetric scheme falls short of achieving the theoretical maximum efficiency of wireless power transfer and faces challenges when applied to non-resistive loads. In this study, we propose a theoretical framework and provide experimental evidence demonstrating that asymmetric resonance, based on dispersive gain, can greatly enhance the efficiency of wireless power transfer beyond the limits of symmetric approaches.
View Article and Find Full Text PDFPLoS One
January 2025
Cnooc Information Technology Co., Ltd., Shenzhen, Guangdong, China.
A data transmission delay compensation algorithm for an interactive communication network of an offshore oil field operation scene in severe weather is proposed. To solve the problem of unstable microwave signals and a large amount of noise in the communication network caused by bad weather, the communication network signal denoising method based on Lagrange multiplier symplectic singular value mode decomposition is adopted, and the communication network data denoising process is realized through five steps; phase space reconstruction, symplectic geometric similarity transformation, grouping, diagonal averaging, and adaptive reconstruction. Simultaneously, the weak communication signal is compensated after being captured, that is, the characteristics of the weak signal are enhanced.
View Article and Find Full Text PDFChem Biodivers
January 2025
Department of Pharmaceutical Chemistry, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, India.
Quinolone antibiotics are a crucial class of synthetic antibacterial agents, widely utilized due to their broad spectrum of antibacterial activity. Due to the development of antimicrobial resistance, the potency of quinolone drugs decreased. Many conventional methods have been developed to elevate amination rate and to improve yield.
View Article and Find Full Text PDFSci Rep
January 2025
THz-Photonics Group, Institut für Hochfrequenztechnik, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
The continuous push for high-performance photonic switches is one of the most crucial premises for the sustainable scaling of programmable and reconfigurable photonic circuits for a wide spectrum of applications. Conventional optical switches rely on the perturbative mechanisms of mode coupling or mode interference, resulting in inherent bottlenecks in their switching performance concerning size, power consumption and bandwidth. Here we propose and realize a silicon photonic 2×2 elementary switch based on a split waveguide crossing (SWX) consisting of two halves.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!