Casimir Light in Dispersive Nanophotonics.

Phys Rev Lett

Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Published: July 2021

Time-varying optical media, whose dielectric properties are actively modulated in time, introduce a host of novel effects in the classical propagation of light, and are of intense current interest. In the quantum domain, time-dependent media can be used to convert vacuum fluctuations (virtual photons) into pairs of real photons. We refer to these processes broadly as "dynamical vacuum effects" (DVEs). Despite interest for their potential applications as sources of quantum light, DVEs are generally very weak, presenting many opportunities for enhancement through modern techniques in nanophotonics, such as using media which support excitations such as plasmon and phonon polaritons. Here, we present a theory of weakly modulated DVEs in arbitrary nanostructured, dispersive, and dissipative systems. A key element of our framework is the simultaneous incorporation of time-modulation and "dispersion" through time-translation-breaking linear response theory. As an example, we use our approach to propose a highly efficient scheme for generating entangled surface polaritons based on time-modulation of the optical phonon frequency of a polar insulator.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.127.053603DOI Listing

Publication Analysis

Top Keywords

casimir light
4
light dispersive
4
dispersive nanophotonics
4
nanophotonics time-varying
4
time-varying optical
4
optical media
4
media dielectric
4
dielectric properties
4
properties actively
4
actively modulated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!