Digital light processing additive manufacturing (DLP-AM) technology has received a lot of attention in the field of biomedical engineering due to its high precision and customizability. However, some photoinitiators, as one of the key components in DLP-AM, may present toxicity and limit the application of DLP-AM toward biomedical applications. In order to gain further insights into the correlation between biocompatibility and photoinitiators in photoresins, a study on the selection of photoinitiators used in DLP-AM is conducted. The light absorbance range and cytocompatibility of four photoinitiators, vitamin B2 combined with triethanolamine (B2/TEOA), diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (TPO), 2-dimethoxy-2-phenylacetophenone (DMPA), and 2-hydroxy-4-(2-hydroxyethoxy)-2-methylpropiophenone (I2959), are characterized. Each photoinitiator is then combined with poly(glycerol sebacate) acrylate (PGSA) and poly(ε-caprolactone) diacrylate (PCLDA), to evaluate their miscibility and film formation ability through photopolymerization. The mechanical properties, in vitro and in vivo biocompatibility studies on bulk films are investigated. It is found that B2/TEOA and TPO exhibit a wider light absorbance range than I2959 and DMPA. PGSA films with B2/TEOA (PGSA-B2/TEOA) is capable of sustaining cell proliferation up to 10 days and showing low immune responses after 14 days post implantation, proving its biocompatibility. Although B2/TEOA requires longer photopolymerization time, the mechanical strength of PGSA-B2/TEOA is comparable to PGSA films with TPO and DMPA, and this combination is 3D-printable through DLP-AM at the rate of 100 s per layer. In summary, B2/TEOA is a promising photoinitiator for 3D printing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jbm.a.37277 | DOI Listing |
Molecules
January 2025
College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
Daytime radiative cooling, based on selective infrared emissions through atmospheric transparency windows to outer space and the reflection of solar irradiance, is a zero-energy and environmentally friendly cooling technology. Poly(ethylene oxide) (PEO) electrospun membranes have both selective mid-infrared emissions and effective sunlight reflection, inducing excellent daytime radiative cooling performance. However, PEO is highly water soluble, which makes electrospun PEO membranes unable to cope with rainy conditions when used for outdoor daytime radiative cooling.
View Article and Find Full Text PDFBiofabrication
January 2025
Polymer Chemistry and Biomaterials (PBM) Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281, Building S4, 9000 Ghent, Belgium.
Volumetric bioprinting has revolutionized the field of biofabrication by enabling the creation of cubic centimeter-scale living constructs at faster printing times (in the order of seconds). However, a key challenge remains: developing a wider variety of available osteogenic bioinks that allow osteogenic maturation of the encapsulated cells within the construct. Herein, the bioink exploiting a step-growth mechanism (norbornene-norbornene functionalized gelatin in combination with thiolated gelatin-GelNBNBSH) outperformed the bioink exploiting a chain-growth mechanism (gelatin methacryloyl-GelMA), as the necessary photo-initiator concentration was three times lower combined with a more than 50% reduction in required light exposure dose resulting in an improved positive and negative resolution.
View Article and Find Full Text PDFBiomater Adv
December 2024
Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto and Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Campus Universitario, 5800 Río Cuarto, Argentina. Electronic address:
In this work the development of photoactive dressings (PAD) with dual purpose, is presented. These PAD can be used for the topical treatment of persistent infections caused by fungi and bacteria and are also applicable in light antitumor therapy for carcinoma. The synthesized PAD were designed employing conjugated polymer nanoparticles (CPN) doped with platinum porphyrin which serve as polymerization photoinitiators and photosensitizers for the production of reactive oxygen species (ROS).
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Hand & Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, China.
Bacterial infections and antibiotic resistance are global health problems, and current treatments for bacterial infections still rely on the use of antibiotics. Phototherapy based on the use of a photosensitizer has high efficiency, a broad spectrum, strong selectivity, does not easily induce drug resistance, and is expected to become an effective strategy for the treatment of bacterial infections, particularly drug-resistant infections. This article reviews antimicrobial strategies of phototherapy based on photosensitizers, including photodynamic therapy (PDT), photothermal therapy (PTT), and their combination.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!