A series of Li-CO2 battery cathode materials are reported based on metal-organic frameworks with dual-metal sites containing a metalloporphyrin and a metal-coordinated pyrazole. MnTPzP-Mn demonstrates a low voltage hysteresis of 1.05 V at 100 mA g-1 and good stability of 90 cycles at 200 mA g-1. Among them, the Mn-coordinated pyrazole site can promote the effective decomposition of Li2CO3, and the Mn-metalloporphyrin site contributes to the activation of CO2. This is the first example of using a crystalline cathode material with a well-defined structure to reveal natural catalytic sites for CO2 reduction/evolution reactions under aprotic conditions in Li-CO2 batteries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cc03431f | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!