Effects of doping on photocatalytic water splitting activities of PtS/SnS van der Waals heterostructures.

Phys Chem Chem Phys

State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, People's Republic of China.

Published: September 2021

Photocatalytic water splitting is a promising technology to solve serious energy and environmental problems. The PtS monolayer has been previously predicted to be a water splitting photocatalyst. But the high efficiency of carrier recombination in the monolayer results in poor photocatalytic performance. It is well known that the construction of van der Waals (vdW) heterojunctions can improve the photocatalytic performance of a monolayer. In this investigation, we constructed a PtS/SnS vdW heterojunction and systematically investigated the influence of the doping position and doping ratio on its performance using density functional theory calculations. Interestingly, the band alignment transforms from Type-II to Type-I and from Type-I to Type-II when the S in SnS is replaced with Se in the PtS/SnS vdW heterojunction and the S in PtS is replaced with Se in the PtS/SnSe vdW heterojunction, respectively. More importantly, from the PtS/SnS to PtSe/SnSe vdW heterojunction, the decomposition of water also changes from semi-decomposed water to fully decomposed water. Furthermore, the results show that the direct Z-scheme photocatalytic mechanism exists in the PtSSe/SnSe vdW heterojunction by analysis of the migration paths of photoinduced electrons and holes. And compared with the PtS/SnS, the PtSSe/SnSe heterostructure exhibits better photocatalytic water splitting activities. These results can provide a direction that doping can improve the photocatalytic water splitting performance of heterojunction photocatalysts.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1cp01777bDOI Listing

Publication Analysis

Top Keywords

water splitting
20
vdw heterojunction
20
photocatalytic water
16
water
8
splitting activities
8
van der
8
der waals
8
photocatalytic performance
8
improve photocatalytic
8
pts/sns vdw
8

Similar Publications

Herein, a WO@TCN photocatalyst was successfully synthesized using a self-assembly method, which demonstrated effectiveness in degrading organic dyestuffs and photocatalytic evolution of H. The synergistic effect between WO and TCN, along with the porous structure of TCN, facilitated the formation of a heterojunction that promoted the absorption of visible light, accelerated the interfacial charge transfer, and inhibited the recombination of photogenerated electron-hole pairs. This led to excellent photocatalytic performance of 3%WO@TCN in degrading TC and catalyzing H evolution from water splitting under visible-light irradiation.

View Article and Find Full Text PDF

The interaction of sodium phytate hydrate CHOP·xNa·yHO (phytNa) with Cu(OAc)·HO and 1,10-phenanthroline (phen) led to the anionic tetranuclear complex [Cu(HO)(phen)(phyt)]·2Na·2NH·32HO (), the structure of the latter was determined by X-ray diffraction analysis. The phytate is completely deprotonated; six phosphate fragments (with atoms P1-P6) are characterized by different spatial arrangements relative to the cyclohexane ring (1a5e conformation), which determines two different types of coordination to the complexing agents-P1 and P3, P4, and P6 have monodentate, while P2 and P5 are bidentately bound to Cu cations. The molecular structure of the anion complex is stabilized by a set of strong intramolecular hydrogen bonds involving coordinated water molecules.

View Article and Find Full Text PDF

Dye-sensitization is a promising strategy to improve the light absorption and photoactivity abilities of wide-bandgap semiconductors, like TiO. For effective water-splitting photoanodes with no sacrificial agents, the electrochemical potential of the dye must exceed the thermodynamic threshold needed for the oxygen evolution reaction. This study investigates two promising organic cyanoacrylic dyes, designed to meet that criterion by means of theoretical calculations.

View Article and Find Full Text PDF

With growing environmental concerns and the need for sustainable energy, multifunctional materials that can simultaneously address water treatment and clean energy production are in high demand. In this study, we developed a cost-effective method to synthesize zinc oxide (ZnO) nanowires via the anodic oxidation of zinc foil. By carefully controlling the anodization time, we optimized the Zn/ZnO-5 min electrode to achieve impressive dual-function performance in terms of effective photoelectrocatalysis for water splitting and waste water treatment.

View Article and Find Full Text PDF

Electrochemical water splitting, which encompasses the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER), offers a promising route for sustainable hydrogen production. The development of efficient and cost-effective electrocatalysts is crucial for advancing this technology, especially given the reliance on expensive transition metals, such as Pt and Ir, in traditional catalysts. This review highlights recent advances in the design and optimization of electrocatalysts, focusing on density functional theory (DFT) as a key tool for understanding and improving catalytic performance in the HER and OER.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!