Objective: TGF-β1-induced excessive deposition of extracellular matrix (ECM) and epithelial-mesenchymal transition (EMT) process of tubular epithelial cells play critical roles in the progression of renal fibrosis. We are aimed to explore the effects of lysine-specific demethylase 1 (LSD1) in TGF-β1-treated HK-2 cells and in rats with unilateral ureteral obstruction (UUO), and to investigate the underlying molecular mechanism.
Methods: TGF-β1-treated HK-2 cells and UUO-treated rats were used to establish the model of renal fibrosis in vitro and in vivo, respectively. Protein expression of LSD1, E-cadherin, a-smooth muscle actin (a-SMA), Vimentin, Jagged-1, Notch-1 and Notch-2 were detected by Western blot. The concentrations of type I collagen (Col-I) and Fibronectin (FN) were measured by ELISA. Transwell assay were used to assess cell invasion.
Results: LSD1 was dramatically increased in TGF-β1-stimulated HK-2 cells. Knockdown of LSD1 decreased the TGF-β1-induced secretion of Col-I and FN, and suppressed TGF-β1-induced expression of E-cadherin,α-SMA and Vimentin, while suppressed cell invasion. Consistent with the in vitro data, the severe histopathological damage, collagen deposition and reduced E-cadherin, increased α-SMA induced by UUO was abated by the knockdown of LSD1 in vivo. Moreover, knockdown of LSD1 suppressed TGF-β1-induced expression of Jagged-1, Notch-1 and Notch-2. Furthermore, we found that inhibition of Notch signaling by a γ-secretase inhibitor RO4929097 almost recapitulated the effects of LSD1 knockdown in TGF-β1-induced HK-2 cells, and at least in part reversed the effects of LSD1 overexpression on EMT and ECM deposition in HK-2 cells.
Conclusions: Taken together, LSD1 significantly impact on the progression of TGF-β1-mediated EMT and ECM deposition in HK-2 cells, and it may represent novel target for the prevention strategies of renal fibrosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/09603271211038743 | DOI Listing |
Cytotechnology
April 2025
Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Because acute kidney injuries (AKI) are one of the critical health problems worldwide, studies on the risk factors, mechanisms, and treatment strategies seem necessary. Glycerol (GLY), known to induce cell necrosis via myoglobin accumulation in renal tubules, is widely used as an AKI model. This study aimed to evaluate the protective effects of gallic acid (GA) against GLY-induced AKI.
View Article and Find Full Text PDFClin Sci (Lond)
January 2025
Zhengzhou University First Affiliated Hospital, Zhengzhou, China.
Neddylation is a process of attaching neuronal precursor cell-expressed developmentally downregulated protein 8 (NEDD8) to substrates for the protein function modulation via enzymatic cascades involving NEDD8-activating enzyme (E1), NEDD8-conjugating enzyme (E2), and NEDD8 ligase (E3). Defective in cullin neddylation 1 (DCN1) serves as a co-E3 ligase, that can simultaneously bind E2 UBE2M and cullin proteins to stabilize the catalytic center of the Cullin-Ring E3 ligase (CRL) complex, thereby promoting cullin neddylation. Neddylation is reported to be activated in diverse human diseases, and inhibition of protein neddylation has been regarded as a promising anticancer therapy.
View Article and Find Full Text PDFNephrology (Carlton)
February 2025
Department of Quality Management, Tianjin Blood Center, Tianjin, China.
Aim: To study the effect and elucidate the underlying mechanisms of VDAC1-ΔC on autophagy in renal tubular epithelial cells injured by hypoxia/reoxygenation.
Methods: C57/BL6 mice were randomly divided into groups: sham operation group, IRI 1d group and IRI 2d group. The inner canthal blood of mice was collected to detect the levels of serum creatinine and urea nitrogen and kidney tissues were sampled, and sections were stained with Periodic acid-Schiff for morphological evaluation.
Diseases
January 2025
Department of Urology, Kanazawa Medical University, Uchinada 920-0293, Ishikawa, Japan.
Urinary stones (urolithiasis) have been categorized as kidney stones (renal calculus), ureteric stones (ureteral calculus and ureterolith), bladder stones (bladder calculus), and urethral stones (urethral calculus); however, the mechanisms underlying their promotion and related injuries in glomerular and tubular cells remain unclear. Although lifestyle-related diseases (LSRDs) such as hyperglycemia, type 2 diabetic mellitus, non-alcoholic fatty liver disease/non-alcoholic steatohepatitis, and cardiovascular disease are risk factors for urolithiasis, the underlying mechanisms remain unclear. Recently, heat shock protein 90 (HSP90) on the membrane of HK-2 human proximal tubular epithelium cells has been associated with the adhesion of urinary stones and cytotoxicity.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, 430060, China.
Objectives: To explore the effects of puerarin on renal ischemia/reperfusion injury and the possible mechanism.
Materials And Methods: The experimental mice were injected with puerarin (50 or 100 mg/kg) per day or equal sterile saline by intraperitoneal injection for one week, and a renal I/R injury model was constructed. HK-2 cells were incubated with puerarin (1 uM and 10 uM) before the H/R model.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!