[Research progress on in vitro models of cardiomyocyte injury].

Zhongguo Zhong Yao Za Zhi

Modern Research Center for Traditional Chinese Medicine,School of Chinese Materia Medica, Beijing University of Chinese Medicine Beijing 100029,China.

Published: July 2021

AI Article Synopsis

  • Cardiovascular diseases pose significant risks to health, particularly emphasizing the concern over myocardial injury and the potential for new drug development through the unique properties of Chinese medicine.
  • Recent advancements in isolating cardiomyocytes have led to the creation of cost-effective and controllable in vitro models that simulate cardiomyocyte injury, which are essential for understanding mechanisms and testing treatments.
  • This study reviews various in vitro models representing diverse clinical conditions, assessing their principles, strengths, and challenges to support further exploration of myocardial injury and therapeutic options.

Article Abstract

Cardiovascular diseases seriously endanger human health and life. The accompanying myocardial injury has been a focus of attention in society. Chinese medicine,serving as a natural and precious reservoir for the research and development of new drugs,is advantageous in resisting myocardial injury due to its multi-component,multi-pathway,and multi-target characteristics. In recent years,with the extensive application of culture method for isolated cardiomyocytes,a cost-effective,controllable in vitro model of cardiomyocyte injury with uniform samples is becoming a key tool for mechanism research on cardiomyocyte injury and drug development.A good in vitro model can reduce experimental and manpower cost,and also accurately stimulate clinical changes to reveal the mechanism. Therefore,the selection and establishment of in vitro model are crucial for the in-depth research. This study summarized the modeling principles,evaluation indicators,and application of more than ten models reflecting different clinical conditions,such as injuries induced by hypoxia-reoxygenation,hypertrophy,oxidative stress,inflammation,internal environmental disturbance,and toxicity. Furthermore,we analyzed advantages and technical difficulties,aiming to provide a reference for in-depth research on myocardial injury mechanism and drug development.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20210311.601DOI Listing

Publication Analysis

Top Keywords

myocardial injury
12
vitro model
12
cardiomyocyte injury
8
injury
5
[research progress
4
vitro
4
progress vitro
4
vitro models
4
models cardiomyocyte
4
cardiomyocyte injury]
4

Similar Publications

Doxorubicin (DOX) is a commonly used chemotherapeutic medication for treating malignancies, although its cardiotoxicity limits its use. There is growing evidence that alteration of the mitochondrial fission/fusion dynamic processes accompanied by excessive reactive oxygen species (ROS) production and alteration of calcium Ca homeostasis are potential underlying mechanisms of DOX-induced cardiotoxicity (DIC). Metformin (Met) is an AMP-activated protein kinase (AMPK) activator that has antioxidant properties and cardioprotective effects.

View Article and Find Full Text PDF

Cardiac Regeneration in Adult Zebrafish: A Review of Signaling and Metabolic Coordination.

Curr Cardiol Rep

January 2025

Department of Zoology, Trivenidevi Bhalotia College (Affiliated to Kazi Nazrul University), College Para Rd, Raniganj, 713347, West Bengal, India.

Purpose Of Review: This review investigates how post-injury cellular signaling and energy metabolism are two pivotal points in zebrafish's cardiomyocyte cell cycle re-entry and proliferation. It seeks to highlight the probable mechanism of action in proliferative cardiomyocytes compared to mammals and identify gaps in the current understanding of metabolic regulation of cardiac regeneration.

Recent Findings: Metabolic substrate changes after birth correlate with reduced cardiomyocyte proliferation in mammals.

View Article and Find Full Text PDF

Potassium Current Signature of Neuronal/Glial Progenitors in Amniotic Fluid Stem Cells.

Cells

January 2025

Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via dell'Elce di Sotto 8, 06123 Perugia, Italy.

Article Synopsis
  • Amniotic fluid contains stem cells (AF-SCs) that have potential uses in regenerative medicine for treating various injuries and diseases.
  • When exposed to basic Fibroblast Growth Factor (bFGF), AF-SCs show the ability to survive and migrate in a rat brain model, resembling characteristics of neuronal/glial progenitor cells.
  • The study employs electrophysiological techniques to identify specific potassium currents in AF-SCs and confirms that histamine can influence calcium dynamics and potassium current activation in these cells.
View Article and Find Full Text PDF

Background: Direct mechanical ventricular actuation (DMVA) with the Anstadt cup is effective for non-blood-contacting biventricular support. Pneumatic regulation of a silicone device augments ventricular pump function. Vacuum attachment facilitates diastolic augmentation critical for biventricular support.

View Article and Find Full Text PDF

Background: Acute myocardial infarction complicated by cardiogenic shock (AMICS) is frequently preceded by out-of-hospital cardiac arrest (OHCA), with risk of anoxic brain injury. Neuron-specific enolase (NSE) is central to neuroprognostication; however, concomitant hemolysis can increase NSE independent of neuronal injury due to the presence of NSE in erythrocytes. This consideration is critical in AMICS patients treated with a microaxial flow pump (Impella, Abiomed), where hemolysis is frequent.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!