Blood exchanges between young and old partners demonstrate old blood has a detrimental effect on brain health of young animals. Previous studies primarily investigate soluble blood factors, such as transforming growth factor-beta, on the brain and the blood-brain barrier (BBB). However, the role of blood cellular components, particularly erythrocytes, has not been defined. Erythrocyte morphology and rigidity change as mammals age, altering their transport within the capillary bed. This impacts downstream biological events, such as the release of reactive oxygen species and hemoglobin, potentially compromising the BBB. Here, a micro electrical BBB (µE-BBB), with cocultured endothelial and astrocytic cells, and a built-in trans-endothelial electrical resistance (TEER) system is described to monitor the effect of capillary shear stress on erythrocytes derived from young and old mice and people and the subsequent effects of these cells on BBB integrity. This is monitored by the passage of fluorescein isothiocyanate-dextran and real-time profiling of TEER across the BBB after old and young erythrocyte exposure. Compared to young erythrocytes, old erythrocytes induce an increased permeability by 42% and diminished TEER by 2.9% of the µE-BBB. These results suggest that changes in circulating erythrocytes are a biomarker of aging in the context of BBB integrity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8529433 | PMC |
http://dx.doi.org/10.1002/advs.202101912 | DOI Listing |
Cell Death Dis
January 2025
Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model.
View Article and Find Full Text PDFTrends Biotechnol
January 2025
Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands. Electronic address:
Human brain organoids (hBOs) are in vitro, 3D, self-organizing brain tissue structures increasingly used for modeling brain development and disease. Although they traditionally lack vasculature, recent bioengineering developments enable their vascularization, which partly recapitulates neurodevelopmental processes such as neural tube angiogenesis, formation of neurovascular unit (NVU)-like structures, and early barriergenesis. Although vascularized hBOs (vhBOs) are already used to model (defects in) neurovascular development, vascularization efficiency and other outcomes differ substantially between vascularization protocols and overall shortcomings should be considered.
View Article and Find Full Text PDFJ Neurosci
January 2025
University of Miami Miller School of Medicine, Department of Biochemistry and Molecular Biology, Miami, FL 33136.
The opioid epidemic endangers not only public health but also social and economic welfare. Growing clinical evidence indicates that chronic use of prescription opioids may contribute to an elevated risk of ischemic stroke and negatively impact post-stroke recovery. In addition, NLRP3 inflammasome activation has been related to several cerebrovascular diseases, including ischemic stroke.
View Article and Find Full Text PDFNeurochem Res
January 2025
Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.
Alzheimer's disease (AD) is a central nervous system degenerative disease with a stealthy onset and a progressive course characterized by memory loss, cognitive dysfunction, and abnormal psychological and behavioral symptoms. However, the pathogenesis of AD remains elusive. An increasing number of studies have shown that oligodendrocyte progenitor cells (OPCs) and oligodendroglial lineage cells (OLGs), especially OPCs and mature oligodendrocytes (OLGs), which are derived from OPCs, play important roles in the pathogenesis of AD.
View Article and Find Full Text PDFNeurochem Res
January 2025
Diagnostic Radiology Department, National Cancer Institute, Misrata, Libya.
Huntington's disease (HD) is a progressive neurodegenerative disease resulting from a mutation in the huntingtin (HTT) gene and characterized by progressive motor dysfunction, cognitive decline, and psychiatric disturbances. Currently, no disease-modifying treatments are available. Recent research has developed therapeutic agents that may have the potential to directly target the disease pathology, such as gene silencing or clearing the mutant protein.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!