Structural modifications of known antibiotic scaffolds have kept the upper hand on resistance, but we are on the verge of not having antibiotics for many common infections. Mechanism-based discovery assays reveal novelty, exclude off-target liabilities, and guide lead optimization. For that, we developed a fast and automatable protocol using high-throughput Fourier-transform infrared spectroscopy (FTIRS). Metabolic fingerprints of Staphylococcus aureus and Escherichia coli exposed to 35 compounds, dissolved in dimethyl sulfoxide (DMSO) or water, were acquired. Our data analysis pipeline identified biomarkers of off-target effects, optimized spectral preprocessing, and identified the top-performing machine learning algorithms for off-target liabilities and mechanism of action (MOA) identification. Spectral bands with known biochemical associations more often yielded more significant biomarkers of off-target liabilities when bacteria were exposed to compounds dissolved in water than DMSO. Highly discriminative models distinguished compounds with predominant off-target effects from antibiotics with well-defined MOA (AUROC > 0.87, AUPR > 0.79, F1 > 0.81), and from the latter predicted their MOA (AUROC > 0.88, AUPR > 0.70, F1 > 0.70). The compound solvent did not affect predictive models. FTIRS is fast, simple, inexpensive, automatable, and highly effective at predicting MOA and off-target liabilities. As such, FTIRS mechanism-based screening assays can be applied for hit discovery and to guide lead optimization during the early stages of antibiotic discovery.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.27915 | DOI Listing |
Nucleic Acids Res
January 2025
Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
Recently, cytosine base editors (CBEs) have emerged as a promising therapeutic tool for specific editing of single nucleotide variants and disrupting specific genes associated with disease. Despite this promise, the currently available CBEs have the significant liabilities of off-target and bystander editing activities, partly due to the mechanism by which they are delivered, causing limitations in their potential applications. In this study, we engineered optimized, soluble and stable Cas-embedded CBEs (CE_CBEs) that integrate several recent advances, which were efficiently formulated for direct delivery into cells as ribonucleoprotein (RNP) complexes.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Biochemistry, College of Science, King Saud University, Riyadh 14511, Saudi Arabia.
J Pharmacol Exp Ther
October 2024
Pfizer Worldwide Research and Development, La Jolla, California (M.G., S.T., T.R.J., A.V., T.F., M.F.); 1cBio, Inc., Moraga, California (S.P.); Fundación Ciencia & Vida, Santiago, Chile (S.B.); Merck Research Laboratories, South San Francisco, California (R.P.); and Trancura Biosciences, Alameda, California (F.J.H.).
The development of transforming growth factor receptor inhibitors (TGFRi) as new medicines has been affected by cardiac valvulopathy and arteriopathy toxicity findings in nonclinical toxicology studies. PF-06952229 (MDV6058) selected using rational drug design is a potent and selective TGFRI inhibitor with a relatively clean off-target selectivity profile and good pharmacokinetic properties across species. PF-06952229 inhibited clinically translatable phospho-SMAD2 biomarker (≥60%) in human and cynomolgus monkey peripheral blood mononuclear cells, as well as in mouse and rat splenocytes.
View Article and Find Full Text PDFRSC Med Chem
July 2024
Department of Chemistry, Chemistry Research Laboratory, University of Oxford Mansfield Road Oxford OX1 3TA UK
Clin Pharmacol Ther
November 2024
Clinical Pharmacology, Genentech, Inc., South San Francisco, California, USA.
Targeted covalent inhibitors (TCIs) are an emerging class of anticancer therapeutics. TCIs are designed to selectively engage their targeted proteins via covalent warheads. From the drug development standpoint, the covalent inhibition mechanism is anticipated to elicit the following theoretical benefits: (i) an extended duration of therapeutic action that is determined by the target protein turnover rate and not necessarily by drug half-life, (ii) a lower therapeutic dose owing to greater pharmacological potency, (iii) lower risk of off-target binding and associated adverse events, and (iv) reduced drug-drug interaction (DDI) liability due to high selectivity and low dose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!