Overexpression of pEGF improved the gut protective function of Clostridium butyricum partly through STAT3 signal pathway.

Appl Microbiol Biotechnol

Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Wushan Road, Tianhe District, Guangzhou, 510642, Guangdong, China.

Published: August 2021

Clostridium butyricum (C. butyricum) is a probiotic that could promote animal growth and protect gut health. So far, current studies mainly keep up with the basic biological functions of C. butyricum, missing the effective strategy to further improve its protective efficiency. A recent report about C. butyricum alleviating intestinal injury through epidermal growth factor receptor (EGFR) inspired us to bridge this gap by porcine epidermal growth factor (EGF) overexpression. Lacking a secretory overexpression system, we constructed the recombinant strains overexpressing pEGF in C. butyricum for the first time and obtained 4 recombinant strains for highly efficient secretion of pEGF (BC/pPD1, BC/pSPP, BC/pGHF, and BC/pDBD). Compared to the wild-type strain, we confirmed that the expression level ranges of the intestinal development-related genes (Claudin-1, GLUT-2, SUC, GLP2R, and EGFR) and anti-inflammation-related gene (IL-10) in IPECs were upregulated under recombinant strain stimulation, and the growth of Staphylococcus aureus and Salmonella typhimurium was significantly inhibited as well. Furthermore, a particular inhibitor (stattic) was used to block STAT3 tyrosine phosphorylation, resulting in the downregulation on antibacterial effect of recombinant strains. This study demonstrated that the secretory overexpression of pEGF in C. butyricum could upregulate the expression level of EGFR, consequently improving the intestinal protective functions of C. butyricum partly following STAT3 signal activation in IPECs and making it a positive loop. These findings on the overexpression strains pointed out a new direction for further development and utilization of C. butyricum. KEY POINTS: • By 12 signal peptide screening in silico, 4 pEGF overexpression strains of C. butyricum/pMTL82151-pEGF for highly efficient secretion of pEGF were generated for the first time. • The secretory overexpression of pEGF promoted the intestinal development, antimicrobial action, and anti-inflammatory function of C. butyricum. • The overexpressed pEGF upregulated the expression level of EGFR and further magnified the gut protective function of recombinant strains which in turn partly depended on STAT3 signal pathway in IPECs.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-021-11472-yDOI Listing

Publication Analysis

Top Keywords

recombinant strains
16
overexpression pegf
12
stat3 signal
12
secretory overexpression
12
expression level
12
butyricum
10
gut protective
8
protective function
8
clostridium butyricum
8
butyricum partly
8

Similar Publications

Optimization of fermentation conditions for whole cell catalytic synthesis of D-allulose by engineering Escherichia coli.

Sci Rep

December 2024

State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Science, Jinan, 250353, People's Republic of China.

D-allulose/D-psicose is a significant rare sugar with broad applications in the pharmaceutical, food, and other industries. In this study, we cloned the D-allulose 3-epimerase (DPEase) gene from Arthrobacter globiformis M30, using pET22b as the vector. The recombinant E.

View Article and Find Full Text PDF

The production of lipopolysaccharide (LPS)-free recombinant proteins from culture supernatants is of great interest to biomedical research and industry. Due to the LPS-free cell wall structure and the well-defined secretion factor B (SecB)-dependent secretion pathway, Gram-positive bacteria are a superior alternative to Escherichia coli expression systems. However, the lack of inducible expression systems for high yields has been a bottleneck.

View Article and Find Full Text PDF

Drug addiction is a multifactorial syndrome in which genetic predispositions and exposure to environmental stressors constitute major risk factors for the early onset, escalation, and relapse of addictive behaviors. While it is well known that stress plays a key role in drug addiction, the genetic factors that make certain individuals particularly sensitive to stress and, thereby, more vulnerable to becoming addicted are unknown. In an effort to test a complex set of gene x environment interactions-specifically gene x chronic stress-here we leveraged a systems genetics resource: BXD recombinant inbred mice (BXD5, BXD8, BXD14, BXD22, BXD29, and BXD32) and their parental mouse lines, C57BL/6J and DBA/2J.

View Article and Find Full Text PDF

Diplodia sapinea (Fr.) Fuckel is a widespread fungal pathogen affecting conifers worldwide. Infections can lead to severe symptoms, such as shoot blight, canker, tree death, or blue stain in harvested wood, especially in Pinus species.

View Article and Find Full Text PDF

This chapter describes the protocol for heterologous expression of Phytophthora proteins in the yeast Pichia pastoris. Two methods to prepare the constructs for expression are described, using two different strains of P. pastoris, as well as methods for protein expression and purification by immobilized metal ion affinity (IMAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!