CD19-specific chimeric antigen receptor (CAR) T cell therapies have shown remarkable early success in highly refractory and relapsing hematological malignancies. However, this potent therapy is accompanied by significant toxicity. Cytokine release syndrome and neurotoxicity are the most widely reported, but the true extent and characteristics of cardiovascular toxicity remain poorly understood. Thus far, adverse cardiovascular effects observed include sinus tachycardia and other arrhythmias, left ventricular systolic dysfunction, profound hypotension, and shock requiring inotropic support. The literature regarding cardiovascular toxicities remains sparse; prospective studies are needed to define the cardiac safety of CAR T cell therapies to optimally harness their potential. This review summarizes the current understanding of the potential cardiovascular toxicities of CD19-specific CAR T cell therapies, outlines a proposed cardiac surveillance protocol for patients receiving this new treatment, and provides a roadmap of the future direction of cardio-oncology research in this area.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8352125 | PMC |
http://dx.doi.org/10.1016/j.jaccao.2020.02.011 | DOI Listing |
Unlabelled: ICANS is a common form of neurological immunotoxicity from CAR T-cell therapy (CAR-T). While high tumor burden, product type and cell dose are established risk factors, there are many unknowns. Our objective was to characterize novel neurological and non-neurological risk factors for the development of ICANS in subjects who received CAR-T.
View Article and Find Full Text PDFRegen Ther
March 2025
Department of Cancer Immunotherapy and Immunology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan.
Chimeric Antigen Receptor (CAR)-T cell therapy has revolutionized the treatment of CD19-positive B-cell malignancies. However, the field is rapidly evolving to target other antigens, such as podocalyxin (PODXL), a transmembrane protein implicated in tumor progression and poor prognosis in various cancers. This study explores the potential of PODXL-targeted CAR-T cells, utilizing a cancer-specific monoclonal antibody (CasMab) technique to enhance the specificity and safety of CAR-T cell therapy.
View Article and Find Full Text PDFMedComm (2020)
February 2025
Chimeric antigen receptor T-cell (CAR-T) therapy is a revolutionary approach in cancer treatment. More than 10 CAR-T products have already approved on market worldly wide, and they use either gamma retroviral vectors or lentiviral vectors to deliver the CAR gene. Both vectors have the ability to effectively and persistently integrate the CAR gene into T cells.
View Article and Find Full Text PDFACG Case Rep J
January 2025
Division of Gastroenterology, University of British Columbia, Vancouver, British Columbia, Canada.
Chimeric antigen receptor T-cell (CAR-T) therapy is a novel immunotherapy for the treatment of refractory malignancies. While various complications have been described previously, sclerosing cholangitis has not been reported. We report the first description of sclerosing cholangitis secondary to Tecartus CAR-T therapy in a 67-year-old man with refractory stage IV mantle cell lymphoma.
View Article and Find Full Text PDFJ Gastroenterol Hepatol
January 2025
Laboratory of Cancer Immunotherapy and Immunology, Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan.
Adoptive cell therapy (ACT) is a type of immunotherapy in which autologous or allogeneic immune cells, such as tumor-infiltrating lymphocytes or engineered lymphocytes, are infused into patients with cancer to eliminate malignant cells. Recently, autologous T cells modified to express a chimeric antigen receptor (CAR) targeting CD19 showed a positive response in clinical studies for hematologic malignancies and have begun to be used in clinical practice. This article discusses the current status and promise of ACT research in hepatocellular carcinoma (HCC), focusing on challenges in off-the-shelf ACT using primary cells or induced pluripotent stem cells (iPSCs) with or without genetic engineering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!