Metabolomics in the Alzheimer's Disease Neuroimaging Initiative cohort provides a powerful tool for mapping biochemical changes in Alzheimer's disease, and a unique opportunity to learn about the association between circulating blood metabolites and brain amyloid-β deposition in Alzheimer's disease. We examined 140 serum metabolites and their associations with brain amyloid-β deposition, cognition and conversion from mild cognitive impairment to Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative. Processed [F] Florbetapir PET images were used to perform a voxel-wise statistical analysis of the effect of metabolite levels on amyloid-β accumulation across the whole brain. We performed a multivariable regression analysis using age, sex, body mass index, apolipoprotein E ε4 status and study phase as covariates. We identified nine metabolites as significantly associated with amyloid-β deposition after multiple comparison correction. Higher levels of one acylcarnitine (C3; propionylcarnitine) and one biogenic amine (kynurenine) were associated with decreased amyloid-β accumulation and higher memory scores. However, higher levels of seven phosphatidylcholines (lysoPC a C18:2, PC aa C42:0, PC ae C42:3, PC ae C44:3, PC ae C44:4, PC ae C44:5 and PC ae C44:6) were associated with increased brain amyloid-β deposition. In addition, higher levels of PC ae C44:4 were significantly associated with lower memory and executive function scores and conversion from mild cognitive impairment to Alzheimer's disease dementia. Our findings suggest that dysregulation of peripheral phosphatidylcholine metabolism is associated with earlier pathological changes noted in Alzheimer's disease as measured by brain amyloid-β deposition as well as later clinical features including changes in memory and executive functioning. Perturbations in phosphatidylcholine metabolism may point to issues with membrane restructuring leading to the accumulation of amyloid-β in the brain. Additional studies are needed to explore whether these metabolites play a causal role in the pathogenesis of Alzheimer's disease or if they are biomarkers for systemic changes during preclinical phases of the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361396PMC
http://dx.doi.org/10.1093/braincomms/fcab139DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
32
amyloid-β deposition
20
brain amyloid-β
16
higher levels
12
disease
9
serum metabolites
8
metabolites associated
8
deposition cognition
8
alzheimer's
8
disease neuroimaging
8

Similar Publications

Translational validity of mouse models of Alzheimer's disease (AD) is variable. Because change in weight is a well-documented precursor of AD, we investigated whether diversity of human AD risk weight phenotypes was evident in a longitudinally characterized cohort of 1,196 female and male humanized APOE (hAPOE) mice, monitored up to 28 months of age which is equivalent to 81 human years. Autoregressive Hidden Markov Model (AHMM) incorporating age, sex, and APOE genotype was employed to identify emergent weight trajectories and phenotypes.

View Article and Find Full Text PDF

Lipid-induced condensate formation from the Alzheimer's Aβ peptide triggers amyloid aggregation.

Proc Natl Acad Sci U S A

January 2025

Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.

The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.

View Article and Find Full Text PDF

Introduction: Alzheimer's disease (AD) patients with higher educational attainment (EA) often exhibit better cognitive function. However, the relationship among EA status, AD pathology, structural brain reserve, and cognitive decline requires further investigation.

Methods: We compared cognitive performance across different amyloid beta (Aβ) positron emission tomography (A ±) statuses and EA levels (High EA/Low EA).

View Article and Find Full Text PDF

Tau Pathology Drives Disease-Associated Astrocyte Reactivity in Salt-Induced Neurodegeneration.

Adv Sci (Weinh)

January 2025

Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.

Dietary high salt intake is increasingly recognized as a risk factor for cognitive decline and dementia, including Alzheimer's disease (AD). Recent studies have identified a population of disease-associated astrocytes (DAA)-like astrocytes closely linked to amyloid deposition and tau pathology in an AD mouse model. However, the presence and role of these astrocytes in high-salt diet (HSD) models remain unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!