A novel pyrolysis char (PC), prepared by HPO catalytic pyrolysis of oily sludge (OS), was presented to remove methylene blue (MB) dye from aqueous solution for the first time. The optimal preparation conditions (catalytic pyrolysis temperature of 411 °C, HPO impregnation ratio of 2.44, and catalytic pyrolysis time of 59 min) were predicted by the response surface methodology. The optimal PC exhibited favorable hierarchical porous properties, which brought a large adsorption capability (322.89 mg/g). The adsorption process fitted well with the Langmuir model and pseudo-second order model. In addition, thermodynamic parameters showed that the adsorption process was endothermic (Δ > 0) and spontaneous (Δ < 0). The adsorption capability was strongly influenced by coexisting metal ions due to the competitive adsorption effect. The inhibition for MB adsorption was arranged in the following order: Al > Fe > Mg > Ca > K > Na. The adsorption mechanism of MB onto the OS-derived PC includes pore filling, π-π interactions, and electrostatic interactions. The as-obtained PC adsorbent exhibited good reusability performance, which leads to great potential in practical application for wastewater treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8359169PMC
http://dx.doi.org/10.1021/acsomega.1c02575DOI Listing

Publication Analysis

Top Keywords

catalytic pyrolysis
16
hierarchical porous
8
pyrolysis char
8
oily sludge
8
adsorption
8
adsorption capability
8
adsorption process
8
pyrolysis
5
catalytic
4
porous catalytic
4

Similar Publications

As global demand for fossil fuels rises amidst depleting reserves and environmental concerns, exploring sustainable and renewable energy sources has become imperative. This study investigated the pyrolysis of corncob, a widely available agricultural waste, using urea as a catalyst to enhance bio-oil production. The aim was to determine the optimum urea concentration and pyrolysis temperature for bio-oil yield from corncob.

View Article and Find Full Text PDF

The transition metal single atoms (SAs)-based catalysts with M-N coordination environment have shown excellent performance in electrocatalytic reduction of CO, and they have received extensive attention in recent years. However, the presence of SAs makes it very difficult to efficiently improve the coordination environment. In this paper, a method of direct high-temperature pyrolysis carbonization of ZIF-8 adsorbed with Ni and Fe ions is reported for the synthesis of Ni SAs and FeN nanoparticles (NPs) supported by the N-doped carbon (NC) hollow nanododecahedras (HNDs) with nanotubes (NTs) on the surface (Ni SAs/FeN NPs@NC-HNDs-NTs).

View Article and Find Full Text PDF

Insight into nitrogen transformation during the binary NaOH-NaCO molten salt thermal treatment of waste tires.

Waste Manag

January 2025

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Molten salt thermal treatment of solid waste is a promising way for energy recovery and pollutant removal. However, the migration of nitrogen during pyrolysis of waste tires poses a challenge for cleaner production. This study investigated nitrogen conversion pathways during waste tires pyrolysis using a binary NaOH-NaCO salt at 425, 500, and 575 °C.

View Article and Find Full Text PDF

Volatile organic compounds (VOCs), such as toluene, are hazardous air pollutants that pose significant health and environmental risks. This study addresses remediation of toluene by developing a bifunctional nitrogen-doped biochar (NDB) activated with sodium hydroxide (NaOH), aimed at reducing toluene emissions through both adsorption and catalytic oxidation. A series of NDB samples were prepared via NaOH activation and pyrolysis at varying temperatures to optimize their adsorption capacity and catalytic performance.

View Article and Find Full Text PDF

Recycling waste to produce liquid fuels for the automotive and aviation industries is a major global concern, especially in light of the ongoing energy crisis. Because waste is used in thermal conversion processes, the resulting liquid products often require additional processing to reduce their density and viscosity, and to remove oxygenated compounds or pollutants that hinder further utilization. Catalytic hydrogenolytic reactions such as hydrodeoxygenation (HDO) and hydrocracking (HC) have been extensively applied to upgrade pyrolysis oils.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!