Gliomas are the largest category of primary malignant brain tumors in adults, and glioblastomas account for nearly half of malignant gliomas. Glioblastomas are notoriously aggressive and drug-resistant, with a very poor 5 year survival rate of about 5%. New approaches to treatment are thus urgently needed. We previously identified an enzyme of fatty acid metabolism, very long-chain acyl-CoA synthetase 3 (ACSVL3), as a potential therapeutic target in glioblastoma. Using the glioblastoma cell line U87MG, we created a cell line with genomic deletion of ACSVL3 (U87-KO) and investigated potential mechanisms to explain how this enzyme supports the malignant properties of glioblastoma cells. Compared to U87MG cells, U87-KO cells grew slower and assumed a more normal morphology. They produced fewer, and far smaller, subcutaneous xenografts in nude mice. Acyl-CoA synthetases, including ACSVL3, convert fatty acids to their acyl-CoA derivatives, allowing participation in diverse downstream lipid pathways. We examined the effect of ACSVL3 depletion on several such pathways. Fatty acid degradation for energy production was not affected in U87-KO cells. Fatty acid synthesis, and incorporation of synthesized fatty acids into membrane phospholipids needed for rapid tumor cell growth, was not significantly affected by lack of ACSVL3. In contrast, U87-KO cells exhibited evidence of altered sphingolipid metabolism. Levels of ceramides containing 18-22 carbon fatty acids were significantly lower in U87-KO cells. This paralleled the fatty acid substrate specificity profile of ACSVL3. The rate of incorporation of stearate, an 18-carbon saturated fatty acid, into ceramides was reduced in U87-KO cells, and proteomics revealed lower abundance of ceramide synthesis pathway enzymes. Sphingolipids, including gangliosides, are functional constituents of lipid rafts, membrane microdomains thought to be organizing centers for receptor-mediated signaling. Both raft morphology and ganglioside composition were altered by deficiency of ACSVL3. Finally, levels of sphingosine-1-phosphate, a sphingolipid signaling molecule, were reduced in U87-KO cells. We conclude that ACSVL3 supports the malignant behavior of U87MG cells, at least in part, by altering cellular sphingolipid metabolism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8360346 | PMC |
http://dx.doi.org/10.18103/mra.v9i5.2433 | DOI Listing |
Knockout (KO) of the fatty acid-activation enzyme very long-chain acyl-CoA synthetase 3 (ACSVL3; SLC27A3) in U87MG glioblastoma cells reduced their malignant growth properties both in vitro and in xenografts. These U87-KO glioma cells grew at a slower rate, became adherence-dependent, and were less invasive than parental U87 cells. U87-KO cells produced fewer, slower-growing subcutaneous and intracranial tumors when implanted in NOD-SCID mice.
View Article and Find Full Text PDFDecreasing the expression of very long-chain acyl-CoA synthetase 3 (ACSVL3) in U87MG glioblastoma cells by either RNA interference or genomic knockout (KO) significantly decreased their growth rate in culture, as well as their ability to form rapidly growing tumors in mice. U87-KO cells grew at a 9-fold slower rate than U87MG cells. When injected subcutaneously in nude mice, the tumor initiation frequency of U87-KO cells was 70% of that of U87MG cells, and the average growth rate of tumors that did form was decreased by 9-fold.
View Article and Find Full Text PDFGliomas are the largest category of primary malignant brain tumors in adults, and glioblastomas account for nearly half of malignant gliomas. Glioblastomas are notoriously aggressive and drug-resistant, with a very poor 5 year survival rate of about 5%. New approaches to treatment are thus urgently needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!