Transcriptome Analysis of .

Bio Protoc

Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany.

Published: September 2018

Profiling bacterial transcriptome is challenging due to the low abundance of bacterial RNA in infected plant tissues. Here, we describe a protocol to profile transcriptome of a foliar bacterial pathogen, pv. DC3000, in the leaves of at an early stage of infection using RNA sequencing (RNA-Seq). Bacterial cells are first physically isolated from infected leaves, followed by RNA extraction, plant rRNA depletion, cDNA library synthesis, and RNA-Seq. This protocol is likely applicable not only to the pathosystem but also to different plant-bacterial combinations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328654PMC
http://dx.doi.org/10.21769/BioProtoc.2987DOI Listing

Publication Analysis

Top Keywords

transcriptome analysis
4
analysis profiling
4
bacterial
4
profiling bacterial
4
bacterial transcriptome
4
transcriptome challenging
4
challenging low
4
low abundance
4
abundance bacterial
4
bacterial rna
4

Similar Publications

Background: TAR-DNA-binding protein 43 (TDP43), is a pathologic marker in neurodegenerative diseases including frontotemporal lobar degeneration and amyotrophic lateral sclerosis. The aggregation of TDP-43, a crucial RNA-binding protein, is a consequence of post-translational modifications (PTMs) that disrupt its normal function. PTMs such as phosphorylation and ubiquitination contribute to the aberrant accumulation of TDP-43 aggregates, leading to neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD).

View Article and Find Full Text PDF

Background And Aim: As a classical formula to invigorate blood circulation, Huoxue Tongluo Qiwei Decoction (HTQD) can effectively treat hypertensive erectile dysfunction (ED), but its exact mechanism of action is not yet clear. The goal of this research was to explore the potential mechanism of HTQD in improving hypertensive erectile dysfunction in rats through transcriptomics, network pharmacology, and associated animal experimentations.

Methods: The HTQD chemical constituents were screened using high-performance liquid chromatography- tandem mass spectrometry (HPLC-MS/MS).

View Article and Find Full Text PDF

Introduction: Ovarian Cancer (OC) was known for its high mortality rate among gynecological malignancies, often resulting in a poor prognosis. This study sought to identify prognostic necroptosis-related long non-coding RNAs (lncRNAs) (NRlncRNAs) with prognostic potential and to construct a reliable risk prediction model for OC patients.

Method: The transcriptome and clinic data were sourced from TCGA and GTEx databases.

View Article and Find Full Text PDF

Exploring vimentin's role in breast cancer via PICK1 alternative polyadenylation and the miR-615-3p-PICK1 interaction.

Biofactors

January 2025

Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, People's Republic of China.

Breast cancer continues to be a major health issue for women worldwide, with vimentin (VIM) identified as a crucial factor in its progression due to its role in cell migration and the epithelial-to-mesenchymal transition (EMT). This study focuses on elucidating VIM's regulatory mechanisms on the miR-615-3p/PICK1 axis. Utilizing the 4T1 breast cancer cell model, we first used RNA-seq and proteomics to investigate the changes in the APA of PICK1 following VIM knockout (KO).

View Article and Find Full Text PDF

Understanding the role of transcription and transcription factors (TFs) in cellular identity and disease, such as cancer, is essential. However, comprehensive data resources for cell line-specific TF-to-target gene annotations are currently limited. To address this, we employed a straightforward method to define regulons that capture the cell-specific aspects of TF binding and transcript expression levels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!