Mitochondria form dynamic cytoplasmic networks which undergo morphological changes in order to adapt to cellular stresses and signals. These changes can include alterations in size and number within a given cell. Analysis of the whole network can be a useful metric to assess overall mitochondrial health, particularly in neurons, which are highly sensitive to mitochondrial dysfunction. Here we describe a method which combines immunofluorescence and computerized image analysis to measure mitochondrial morphology (quantification of number, density, and area) in dopaminergic neurites of mice expressing mitochondrially-targeted eYFP.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8328611PMC
http://dx.doi.org/10.21769/BioProtoc.2471DOI Listing

Publication Analysis

Top Keywords

dopaminergic neurites
8
image-based analysis
4
mitochondrial
4
analysis mitochondrial
4
mitochondrial area
4
area counting
4
counting adult
4
adult mouse
4
mouse dopaminergic
4
neurites mitochondria
4

Similar Publications

Advancing Parkinson's diagnosis: seed amplification assay for α-synuclein detection in minimally invasive samples.

Mol Cell Biochem

January 2025

Neurodegenerative Diseases Laboratory, Center for Biomedicine, Universidad Mayor, Avenida Alemania 0281, 4780000, Temuco, La Araucanía, Chile.

Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by tremor, rigidity, and bradykinesia, beginning with early loss of dopaminergic neurons in the ventrolateral substantia nigra and advancing to broader neurodegeneration in the midbrain. The clinical heterogeneity of PD and the lack of specific diagnostic tests present significant challenges, highlighting the need for reliable biomarkers for early diagnosis. Alpha-synuclein (α-Syn), a protein aggregating into Lewy bodies and neurites in PD patients, has emerged as a key biomarker due to its central role in PD pathophysiology and potential to reflect pathological processes.

View Article and Find Full Text PDF

Taking advantage of the good mechanical strength of expanded Drosophila brains and to tackle their relatively large size that can complicate imaging, we apply potassium (poly)acrylate-based hydrogels for expansion microscopy (ExM), resulting in a 40x plus increased resolution of transgenic fluorescent proteins preserved by glutaraldehyde fixation in the nervous system. Large-volume ExM is realized by using an axicon-based Bessel lightsheet microscope, featuring gentle multi-color fluorophore excitation and intrinsic optical sectioning capability, enabling visualization of Tm5a neurites and L3 lamina neurons with photoreceptors in the optic lobe. We also image nanometer-sized dopaminergic neurons across the same intact iteratively expanded Drosophila brain, enabling us to measure the 3D expansion ratio.

View Article and Find Full Text PDF
Article Synopsis
  • Microtubule dysfunction is linked to neurodegenerative disorders like Parkinson's disease, but it's unclear if it's a cause or a symptom of the disease.
  • Recent research identified that LIMK1 plays a key role in regulating the neuronal cytoskeleton and microtubule dynamics, particularly after traumatic brain injury.
  • The study found that increasing LIMK1 expression correlates with dopaminergic neuron death in a Parkinson's model and that using a LIMK inhibitor successfully reversed this neurodegeneration, suggesting targeting microtubules could be a viable treatment strategy.
View Article and Find Full Text PDF

Parkinson's disease (PD) is a prevalent, chronic neurodegenerative disorder characterised by the progressive loss of dopaminergic neurons in the substantia nigra and other brain regions. The aggregation of alpha-synuclein (α-syn) into Lewy bodies and neurites is a key pathological feature associated with PD and its progression. Many therapeutic studies aim to target these aggregated forms of α-syn to potentially slow down or stop disease progression in PD.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the impact of Shank3 deficiency on dopaminergic neurons in mouse models relevant to autism.
  • Significant reductions in neurite outgrowth and altered morphology of dopaminergic neurons were observed in Shank3-deficient mice compared to wild-type (WT) mice.
  • Although there were no changes in the expression of synaptic proteins, shifts in dopaminergic receptor gene expression suggest structural alterations may contribute to autistic symptoms in these models.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!