Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dibutyl phthalate is an endocrine disruptor used in a wide range of industrial and agriculture applications. The present study focuses on elucidating the effect of subacute exposure (4-weeks) of DBP on insulin and its sensitivity indexes, oxidative status, thyroid function, energy metabolites, serum biochemistry, and anthropometry in rats. A total of 64 rats were divided into 4 treatment groups as mg DBP/Kg body weight per day: (a) 0 mg/Kg (control), (b) 10 mg/Kg (DBP-10), (c) 50 mg/Kg (DBP-50), and (d) 100 mg/Kg (DBP-100). The rats in each treatment ( = 16) were further divided into male ( = 8) and female ( = 8) rats for studying treatment and gender interactions. Intraperitoneal glucose tolerance test (IPGTT) was performed on the 21 day. Anthropometry, nutritional determinants, fasting plasma glucose, fasting plasma insulin, homeostatic model assessment (HOMA), thyroid hormones, energy metabolites, and oxidative status were studied during the experimental period. Two-way ANOVA was used to analyze the data ( < 0.05). Tukey's posthoc test was used for pair-wise comparisons. DBP increased body weight gain and feed efficiency in an inverted nonmonotonic -shaped fashion. Hyperglycemia and increased blood glucose area under the curve were observed in DBP-100 at 120 minutes in IPGTT. The HOMA also showed a linear monotonic contrast. Thyroxin decreased significantly in the DBP-100 rats, whereas malondialdehyde, nonesterified fatty acids, and beta hydroxyl butyrate were increased with the DBP treatments. In conclusion, DBP could be attributed to the development of hyperglycemia and insulin resistance in rats. Further investigations into the lipid peroxidation pathways can improve our understanding of the mechanisms involved in metabolic disruption.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8357475 | PMC |
http://dx.doi.org/10.1155/2021/5521516 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!