The speckle-type POZ protein (SPOP) functions as a guardian of genome integrity and controls transcriptional regulation by functioning as a substrate adaptor for CUL3/RING-type E3 ubiquitin ligase complexes. SPOP-containing CUL3 complexes target a myriad of DNA-binding proteins involved in DNA repair and gene expression, and as such, are essential modulators of cellular homeostasis. GLI transcription factors are effectors of the Hedgehog (HH) pathway, a key driver of tissue morphogenesis and post-developmental homeostasis that is commonly corrupted in cancer. CUL3-SPOP activity regulates amplitude and duration of HH transcriptional responses by controlling stability of GLI family members. SPOP and GLI co-enrich in phase separated nuclear droplets that are thought to serve as hot spots for CUL3-mediated GLI ubiquitination and degradation. A similar framework exists in , in which the Hedgehog-induced MATH (meprin and traf homology) and BTB (bric à brac, tramtrack, broad complex) domain containing protein (HIB) targets the GLI ortholog Cubitus interruptus (Ci) for Cul3-directed proteolysis. Despite this functional conservation, the molecular mechanisms by which HIB and SPOP contribute to and vertebrate HH signaling differ. In this mini-review we highlight similarities between the two systems and discuss evolutionary divergence in GLI/Ci targeting that informs our understanding of how the GLI transcriptional code is controlled by SPOP and CUL3 in health and disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8362800 | PMC |
http://dx.doi.org/10.3389/fcell.2021.710295 | DOI Listing |
Mol Biol Cell
January 2025
Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
SPOP is a Cul3 substrate adaptor responsible for the degradation of many proteins related to cell growth and proliferation. Because mutation or misregulation of SPOP drives cancer progression, understanding the suite of SPOP substrates is important to understanding the regulation of cell proliferation. Here, we identify Nup153, a component of the nuclear basket of the nuclear pore complex, as a novel substrate of SPOP.
View Article and Find Full Text PDFPLoS Genet
December 2024
School of Biological Sciences, Anhui Province Key Laboratory of Translational Cancer Research, Bengbu Medical University, Bengbu, China.
As the adaptor protein that determines substrate specificity of the Cul3-SPOP-Rbx1 E3 ligase complex, SPOP is involved in numerous biological processes. However, its physiological connections with adipogenesis and thermogenesis remain poorly understood. In the current study, we report that the conditional knockout of Spop in mice results in substantial changes in protein expression, including the upregulation of a critical factor associated with thermogenesis, UCP1.
View Article and Find Full Text PDFCell Mol Life Sci
November 2024
BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon- si, Gyeonggi-do, 14662, Republic of Korea.
RIPK1/RIPK3-MLKL signaling molecules are fundamental in initiating necroptotic cell death, but their roles in the development of colon cancer are unclear. This study reports that RIPK3 interacted with SPOP, a component of the E3 ligase within the Cul3 complex. This interaction leads to K48-linked ubiquitination and subsequent proteasomal degradation of RIPK3.
View Article and Find Full Text PDFCell Death Dis
February 2024
Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), 519000, Zhuhai, Guangdong, China.
The adaptor SPOP recruits substrates to CUL3 E3 ligase for ubiquitination and degradation. Structurally, SPOP harbors a MATH domain for substrate recognition, and a BTB domain responsible for binding CUL3. Reported point mutations always occur in SPOP's MATH domain and are through to disrupt affinities of SPOP to substrates, thereby leading to tumorigenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!