Antibiotic and herbicide resistance genes are the most common marker genes for plant transformation to improve crop yield and food quality. However, there is public concern about the use of resistance marker genes in food crops due to the risk of potential gene flow from transgenic plants to compatible weedy relatives, leading to the possible development of "superweeds" and antibiotic resistance. Several selectable marker genes such as , which have been synthesized to generate transgenic plants by genetic transformation, have shown some limitations. These marker genes, which confer antibiotic or herbicide resistance and are introduced into crops along with economically valuable genes, have three main problems: selective agents have negative effects on plant cell proliferation and differentiation, uncertainty about the environmental effects of many selectable marker genes, and difficulty in performing recurrent transformations with the same selectable marker to pyramid desired genes. Recently, a simple, novel, and affordable method was presented for plant cells to convert non-metabolizable phosphite (Phi) to an important phosphate (Pi) for developing cells by gene expression encoding a phosphite oxidoreductase (PTXD) enzyme. The gene, in combination with a selection medium containing Phi as the sole phosphorus (P) source, can serve as an effective and efficient system for selecting transformed cells. The selection system adds nutrients to transgenic plants without potential risks to the environment. The /Phi system has been shown to be a promising transgenic selection system with several advantages in cost and safety compared to other antibiotic-based selection systems. In this review, we have summarized the development of selection markers for genetic transformation and the potential use of the /Phi scheme as an alternative selection marker system to minimize the future use of antibiotic and herbicide marker genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323600 | PMC |
http://dx.doi.org/10.7717/peerj.11809 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.
Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, and ranks among the most lethal malignancies globally, primarily due to its high rates of recurrence and metastasis. Despite the urgency, no reliable biomarkers currently exist for predicting tumor recurrence in HCC. Telomerase reverse transcriptase (TERT) promoter mutations (TERTpm) and cellular tumor antigen p53 mutations (TP53m) have been frequently documented in HCC, but their combined clinical significance remains undefined.
View Article and Find Full Text PDFSci Rep
January 2025
The Department of Biomedical and Clinical Sciences (BKV), Linköping University, Linköping, Sweden.
Difficult-to-heal wounds management accounts for about 4% of healthcare costs, highlighting the need for innovative solutions. Extracellular signals drive cell proliferation during tissue regeneration, while epigenetic mechanisms regulate stem cell homeostasis, differentiation, and skin repair. Exploring epigenetic regulation in adipose-derived stem cells (ADSCs) holds promise for improving skin injury treatments.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095-1554, USA.
In the analysis of spatially resolved transcriptomics data, detecting spatially variable genes (SVGs) is crucial. Numerous computational methods exist, but varying SVG definitions and methodologies lead to incomparable results. We review 34 state-of-the-art methods, classifying SVGs into three categories: overall, cell-type-specific, and spatial-domain-marker SVGs.
View Article and Find Full Text PDFFuture Microbiol
January 2025
Universidad San Francisco de Quito, Colegio de Ciencias Biológicas Ambientales, Instituto de Microbiología, Quito, Ecuador.
Aim: To investigate the nucleotide sequences associated with transposable elements carrying bla allelic variants as potential markers for the transmission of antimicrobial resistance genes between domestic animals, humans and the environment.
Materials & Methods: We conducted whole-genome sequencing and analyzed the nucleotide sequences of most abundant bla allelic variants (bla, bla, and bla) in commensal Escherichia coli ( = 20) from household members in Quito and uropathogenic E. coli (UPEC) ( = 149) isolated from nine clinics in Quito, Ecuador.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!