Accurately tracking a group of small biological organisms using algorithms to obtain their movement trajectories is essential to biomedical and pharmaceutical research. However, object mis-detection, segmentation errors and overlapped individual trajectories are particularly common issues that restrict the development of automatic multiple small organism tracking research. Extending on previous work, this paper presents an accurate and generalised Multiple Small Biological Organism Tracking System (MSBOTS), whose general feasibility is tested on three types of organisms. Evaluated on zebrafish, Artemia and Daphnia video datasets with a wide variety of imaging conditions, the proposed system exhibited decreased overall Multiple Object Tracking Precision (MOTP) errors of up to 77.59%. Moreover, MSBOTS obtained more reliable tracking trajectories with a decreased standard deviation of up to 47.68 pixels compared with the state-of-the-art idTracker system. This paper also presents a behaviour analysis module to study the locomotive characteristics of individual organisms from the obtained tracking trajectories. The developed MSBOTS with the locomotive analysis module and the tested video datasets are made freely available online for public research use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323605PMC
http://dx.doi.org/10.7717/peerj.11750DOI Listing

Publication Analysis

Top Keywords

multiple small
12
small biological
12
organism tracking
12
biological organism
8
tracking system
8
paper presents
8
video datasets
8
tracking trajectories
8
analysis module
8
tracking
7

Similar Publications

TiSquantum dots composite carbon nanotubes aerogel with electromagnetic interference shielding effect.

Nanotechnology

January 2025

Institute of Nonlinear Optics, College of Science, JiuJiang University, Jiangxi 334000, People's Republic of China.

Titanium disulfide quantum dots (TiSQDs) has garnered significant research interest due to its distinctive electronic and optical properties. However, the effectiveness of TiSQDs in electromagnetic interference (EMI) shielding is influenced by various factors, including their size, morphology, monodispersity, tunable bandgap, Stokes shift and interfacial effects. In this study, we propose a systematic approach for the synthesis of TiSQDs with small size (3.

View Article and Find Full Text PDF

Introduction: The purpose of this study was to evaluate the association between body composition, overall survival, odds of receiving treatment, and patient-reported outcomes (PROs) in individuals living with metastatic non-small-cell lung cancer (mNSCLC).

Methods: This retrospective analysis was conducted in newly diagnosed patients with mNSCLC who had computed-tomography (CT) scans and completed PRO questionnaires close to metastatic diagnosis date. Cox proportional hazard models and logistic regression evaluated overall survival and odds of receiving treatment, respectively.

View Article and Find Full Text PDF

Background: Pancreatic cancer is highly aggressive and has a low survival rate primarily due to late-stage diagnosis and the lack of effective early detection methods. We introduce here a novel, noninvasive urinary extracellular vesicle miRNA-based assay for the detection of pancreatic cancer from early to late stages.

Methods: From September 2019 to July 2023, Urine samples were collected from patients with pancreatic cancer (n = 153) from five distinct sites (Hokuto Hospital, Kawasaki Medical School Hospital, National Cancer Center Hospital, Kagoshima University Hospital, and Kumagaya General Hospital) and non-cancer participants (n = 309) from two separate sites (Hokuto Hospital and Omiya City Clinic).

View Article and Find Full Text PDF

Hyperspectral image classification in remote sensing often encounters challenges due to limited annotated data. Semi-supervised learning methods present a promising solution. However, their performance is heavily influenced by the quality of pseudo labels.

View Article and Find Full Text PDF

The growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!