Deciphering the Therapeutic Mechanisms of Wuzi Ershen Decoction in Treating Oligoasthenozoospermia through the Network Pharmacology Approach.

Evid Based Complement Alternat Med

Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.

Published: August 2021

Background: Infertility affects approximately 15% of couples around the world, and male factors are accounted for 40-50%. Oligoasthenozoospermia is the most common reason for male infertility. Unfortunately, effective drug therapy is still lacking except for assisted reproductive technology (ART). Previous researchers found that Wuzi Ershen decoction (WZESD) can increase sperm count, enhance sperm vitality, and improve semen quality. However, the pharmacological mechanisms remain unclear.

Methods: In this study, we screened compounds and predicted the targets of WZESD based on the TCMSP and BATMAN-TCM database combined with literature searching in the PubMed database. We obtained proteins related to oligoasthenozoospermia through GeneCards and submitted them to STRING to obtain the protein-protein interaction (PPI) network. Potential targets of WZESD were mapped to the network, and the hub targets were screened by topology. We used online platform Metascape and Enrichr for GO and KEGG enrichment analyses. AutoDock Vina was utilized for further verification of the binding mode between compounds and targets.

Results: Totally, 276 bioactive compounds were obtained and targeted 681 proteins. 446 oligoasthenozoospermia disease-specific proteins were acquired, and further bioinformatics analysis found that they were mainly involved in the formation of gametes, meiosis, and sperm differentiation. Protein interaction network analysis revealed that target proteins of WZESD were associated with oligoasthenozoospermia disease-specific proteins. The 79 targets of disease-specific proteins, which were anchored by WZESD, mainly participate in the cellular response to the organic cyclic compound, regulation of the apoptotic process, nitricoxide biosynthetic and metabolic process, oxidative stress, and protein phosphorylation regulation, which are the causes for oligoasthenozoospermia. Molecular docking simulation further validated that bioactive compounds originated from WZESD with targeted proteins showed high binding efficiency.

Conclusions: This study uncovers the therapeutic mechanisms of WZESD for oligoasthenozoospermia treatment from the perspective of network pharmacology and may provide a valuable reference for further experimental research studies and clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8363445PMC
http://dx.doi.org/10.1155/2021/5591844DOI Listing

Publication Analysis

Top Keywords

disease-specific proteins
12
therapeutic mechanisms
8
wuzi ershen
8
ershen decoction
8
network pharmacology
8
targets wzesd
8
bioactive compounds
8
oligoasthenozoospermia disease-specific
8
oligoasthenozoospermia
7
wzesd
7

Similar Publications

Poor oral health is an independent risk factor for upper-aerodigestive tract cancers, including esophageal squamous cell carcinoma (ESCC); thus, good oral health may reduce the risk of ESCC. We previously reported that high expression of Toll-like receptor (TLR) 6, which recognizes peptidoglycan (PGN) from Gram-positive bacteria correlates with a good prognosis after esophagectomy for ESCC. Most beneficial bacteria in the mouth are Gram-positive.

View Article and Find Full Text PDF

SUGT1 is a prognostic biomarker and is associated with immune infiltrates in ovarian cancer.

Eur J Med Res

January 2025

Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, NO. 3 Qingchun East Road, Hangzhou, 310016, China.

Background: Ovarian cancer (OC) is a prevalent gynecological malignancy with a relatively dismal prognosis. The SGT1 homolog (SUGT1) protein, which interacts with heat shock protein 90 and is essential for the G1/S and G2/M transitions, was formerly thought to be a cancer promoter, but its precise role in OC remains unknown.

Methods: We conducted a comprehensive bioinformatics analysis of SUGT1 expression in patients with OC compared with their normal controls, including the data from the cancer genome atlas (TCGA), genotype-tissue expression (GTEx) databases, gene ontology (GO) analysis, Kyoto Encylopedia of Genes and Genomes (KEGG) analysis, gene set enrichment analysis (GSEA), single sample gene set enrichment analysis (ssGSEA).

View Article and Find Full Text PDF

Exploring the role of ELOVLs family in lung adenocarcinoma based on bioinformatic analysis and experimental validation.

BMC Cancer

January 2025

Department of Respiratory and Critical Care Medicine, Research Center for Chronic Airway Diseases, Peking University Third Hospital, Peking University Health Science Center, Beijing, China.

Background: The role of lipid metabolic reprogramming in the development of various types of cancer has already been established. However, the exact biological function and significance of the elongation of very-long-chain fatty acids (ELOVLs) gene family, which can affect fatty acid metabolism, is still not well understood in lung adenocarcinoma (LUAD). The aim of our study is to explore whether there are genes related to the pathogenesis of LUAD in the ELOVLs family, and even to guide clinical medication and potential prognostic indicators.

View Article and Find Full Text PDF

Background: Special AT-rich binding protein-2 (SATB2) is a nuclear matrix associated protein regulating gene expression which is normally expressed in colonic tissue. Loss of SATB2 expression in colorectal cancer (CRC) has negative implications for prognosis and has been associated with chemotherapy resistance. Furthermore, recent evidence suggests SATB2 may influence immune checkpoint (IC) expression.

View Article and Find Full Text PDF

Background: The role of Zona pellucida glycoprotein 3 (ZP3) is unclear in pancreatic adenocarcinoma (PAAD).

Objective: This study aimed to explore the role of ZP3 in PAAD.

Methods: A comparative analysis of ZP3 gene expression was performed to discern differences between various types of cancer and PAAD, leveraging data sourced from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!