A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cationic Cycloheptatrienyl Cyclopentadienyl Manganese Sandwich Complexes: Tromancenium Explored with High-Power LED Photosynthesis. | LitMetric

AI Article Synopsis

  • The study revisits an overlooked manganese sandwich complex that has 18 valence electrons, first discovered about 50 years ago by Fischer and Pauson, showcasing its unique properties.
  • Advanced photochemical methods were developed to quickly synthesize the original complex and its functionalized variations with various substituents.
  • Comprehensive analyses using various spectroscopic techniques and quantum chemical calculations reveal unique electrochemical behaviors and bonding characteristics that differentiate these tromancenium salts from similar complex salts of cobalt and early transition metals.

Article Abstract

In this contribution, we revisit the neglected and forgotten cationic, air-stable, 18-valence electron, heteroleptic sandwich complex (cycloheptatrienyl)(cyclopentadienyl)manganese, which was reported independently by Fischer and by Pauson about 50 years ago. Using advanced high-power LED photochemical synthesis, an expedient rapid access to the parent complex and to functionalized derivatives with alkyl, carboxymethyl, bromo, and amino substituents was developed. A thorough study of these "tromancenium" salts by a range of spectroscopic techniques (H/C/Mn-NMR, IR, UV-vis, HRMS, XRD, XPS, EPR), cyclic voltammetry (CV), and quantum chemical calculations (DFT) shows that these manganese sandwich complexes are unique metallocenes with quite different chemical and physical properties in comparison to those of isoelectronic cobaltocenium salts or (cycloheptatrienyl)(cyclopentadienyl) sandwich complexes of the early transition metals. Electrochemically, all tromancenium ions undergo a chemically partially reversible oxidation and a chemically irreversible reduction at half-wave or peak potentials that respond to the substituents at the Cp deck. As exemplarily shown for the parent tromancenium ion, the product generated during the irreversible reduction process reverts at least partially to the starting material upon reoxidation. Quantum-chemical calculations of the parent tromancenium salt indicate that metal-ligand bonding is distinctly weaker for the cycloheptatrienyl ligand in comparison to that of the cyclopentadienyl ligand. Both the HOMO and the LUMO are metal and cycloheptatrienyl-ligand centered, indicating that chemical reactions will occur either metal-based or at the seven-membered ring, but not on the cyclopentadienyl ligand.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8356223PMC
http://dx.doi.org/10.1021/acs.organomet.1c00376DOI Listing

Publication Analysis

Top Keywords

sandwich complexes
12
manganese sandwich
8
high-power led
8
irreversible reduction
8
parent tromancenium
8
cyclopentadienyl ligand
8
cationic cycloheptatrienyl
4
cycloheptatrienyl cyclopentadienyl
4
cyclopentadienyl manganese
4
sandwich
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!