Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding the effects of polymer brush architecture on particle interactions in solution is requisite to enable the development of functional materials based on self-assembled polymer-grafted nanoparticles (GNPs). Static and dynamic light scattering of polystyrene-grafted silica particle solutions in toluene reveals that the pair interaction potential, inferred from the second virial coefficient, , is strongly affected by the grafting density, σ, and degree of polymerization, , of tethered chains. In the limit of intermediate σ (∼0.3 to 0.6 nm) and high , is positive and increases with . This confirms the good solvent conditions and can be qualitatively rationalized on the basis of a pair interaction potential derived for grafted (brush) particles. In contrast, for high σ > 0.6 nm and low , displays an unexpected reversal to negative values, thus indicating poor solvent conditions. These findings are rationalized by means of a simple analysis based on a coarse-grained brush potential, which balances the attractive core-core interactions and the excluded volume interactions imparted by the polymer grafts. The results suggest that the steric crowding of polymer ligands in dense GNP systems may fundamentally alter the interactions between brush particles in solution and highlight the crucial role of architecture (internal microstructure) on the behavior of hybrid materials. The effect of grafting density also illustrates the opportunity to tailor the physical properties of hybrid materials by altering geometry (or architecture) rather than a variation of the chemical composition.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8361431 | PMC |
http://dx.doi.org/10.1021/acs.macromol.1c00907 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!