No Need for Reconstruction of a Giant Aortic Aneurysm in an Infant.

Eur J Vasc Endovasc Surg

Department of Pediatric Surgery, Hospital Universitario La Paz, Madrid, Spain.

Published: September 2021

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejvs.2021.06.014DOI Listing

Publication Analysis

Top Keywords

reconstruction giant
4
giant aortic
4
aortic aneurysm
4
aneurysm infant
4
reconstruction
1
aortic
1
aneurysm
1
infant
1

Similar Publications

Mechanisms driving the spatial and temporal patterns of species distribution in the Earth's largest habitat, the deep ocean, remain largely enigmatic. The late Miocene to the Pliocene (~23-2.58 Ma) is a period that was marked by significant geological, climatic, and oceanographic changes.

View Article and Find Full Text PDF

Introduction: Giant basal cell carcinoma (GBCC) is a rare and aggressive subtype of basal cell carcinoma (BCC), characterized by a diameter of ≥5 cm and a potential for deep tissue invasion. This study aimed to present our experience with the surgical management of GBCC in the maxillofacial region, focusing on resection and immediate reconstruction strategies.

Methods: We conducted a retrospective analysis of 5926 patients with BCC in the maxillofacial region from 2010 to 2020, with a specific emphasis on 32 patients diagnosed with GBCC.

View Article and Find Full Text PDF

Desmoid fibromatosis (DF) is a rare low-grade benign myofibroblastic neoplasm that originates from fascia and muscle striae. For giant chest wall DF, surgical resection offer a radical form of treatment and the causing defects usually need repair and reconstruction, which can restore the structural integrity and rigidity of the thoracic cage. The past decade witnessed rapid advances in the application of various prosthetic material in thoracic surgery.

View Article and Find Full Text PDF

Giant congenital melanocytic nevi are large pigmented premalignant lesions present at birth that have an associated risk of malignant transformation. Full-thickness excision of these lesions would be required to eliminate this risk. However, giant nevi can leave behind large defects that can be challenging to reconstruct.

View Article and Find Full Text PDF

Coplanar Dimeric Acceptors with Bathochromic Absorption and Torsion-Free Backbones through Precise Fluorination Enabling Efficient Organic Photovoltaics with 18.63% Efficiency.

Adv Sci (Weinh)

January 2025

Guangdong-Hong Kong Joint Laboratory for Carbon Neutrality, Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, Guangdong, 529199, P. R. China.

Giant dimeric acceptors (GDAs), a sub-type of acceptor materials for organic solar cells (OSCs), have garnered much attention due to the synergistic advantages of their monomeric and polymeric acceptors, forming a well-defined molecular structure with a giant molecular weight for high efficiency and stability. In this study, for the first time, two new GDAs, DYF-V and DY2F-V are designed and synthesized for OSC operation, by connecting one vinylene linker with the mono-/di-fluorinated end group on two Y-series monomers, respectively. After fluorination, both DYF-V and DY2F-V exhibit bathochromic absorption and denser packing modes due to the stronger intramolecular charge transfer effect and torsion-free backbones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!