A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The fecal microbiome and rotavirus vaccine immunogenicity in rural Zimbabwean infants. | LitMetric

Background: Oral rotavirus vaccine (RVV) immunogenicity is considerably lower in low- versus high-income populations; however, the mechanisms underlying this remain unclear. Previous evidence suggests that the gut microbiota may contribute to differences in oral vaccine efficacy.

Methods: We performed whole metagenome shotgun sequencing on stool samples and measured anti-rotavirus immunoglobulin A in plasma samples from a subset of infants enrolled in a cluster randomized 2 × 2 factorial trial of improved water, sanitation and hygiene and infant feeding in rural Zimbabwe (SHINE trial: NCT01824940). We examined taxonomic microbiome composition and functional metagenome features using random forest models, differential abundance testing and regression analyses to explored associations with RVV immunogenicity.

Results: Among 158 infants with stool samples and anti-rotavirus IgA titres, 34 were RVV seroconverters. The median age at stool collection was 43 days (IQR: 35-68), corresponding to a median of 4 days before the first RVV dose. The infant microbiome was dominated by Bifidobacterium longum. The gut microbiome differed significantly between early (≤42 days) and later samples (>42 days) however, we observed no meaningful differences in alpha diversity, beta diversity, species composition or functional metagenomic features by RVV seroconversion status. Bacteroides thetaiotaomicron was the only species associated with anti-rotavirus IgA titre. Random forest models poorly classified seroconversion status by both composition and functional microbiome variables.

Conclusions: RVV immunogenicity is low in this rural Zimbabwean setting, however it was not associated with the composition or function of the early-life gut microbiome in this study. Further research is warranted to examine the mechanisms of poor oral RVV efficacy in low-income countries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8423000PMC
http://dx.doi.org/10.1016/j.vaccine.2021.07.076DOI Listing

Publication Analysis

Top Keywords

composition functional
12
rotavirus vaccine
8
rural zimbabwean
8
rvv immunogenicity
8
stool samples
8
random forest
8
forest models
8
anti-rotavirus iga
8
gut microbiome
8
seroconversion status
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!