Simple, inexpensive and RNase-free purification of plasmid DNA by fractional precipitation with isopropanol.

Biotechniques

Department of Chemistry & Biotechnology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia.

Published: September 2021

We present a modified alkaline lysis method for purification of plasmid DNA (pDNA) from bacterial extract using fractional precipitation with isopropanol (FPI). This method includes two successive precipitations with 0.33 and 0.36 volumes of isopropanol and separates pDNA from total RNA and most of the lipopolysaccharides. Using different quality control tests, we demonstrate that plasmids purified with FPI show superior quality compared to plasmids prepared with commercial kits based on spin-column chromatography.

Download full-text PDF

Source
http://dx.doi.org/10.2144/btn-2021-0018DOI Listing

Publication Analysis

Top Keywords

purification plasmid
8
plasmid dna
8
fractional precipitation
8
precipitation isopropanol
8
simple inexpensive
4
inexpensive rnase-free
4
rnase-free purification
4
dna fractional
4
isopropanol modified
4
modified alkaline
4

Similar Publications

Whole-genome automated assembly pipeline for strains from reference, and clinical samples using the integrated CtGAP pipeline.

NAR Genom Bioinform

March 2025

Departments of Medicine and Pediatrics, Division of Infectious Diseases and Global Health, University of California San Francisco School of Medicine, 550 16th Street, 4th Floor Mission Hall, San Francisco, CA, 94158, USA.

Whole genome sequencing (WGS) is pivotal for the molecular characterization of ()-the leading bacterial cause of sexually transmitted infections and infectious blindness worldwide. WGS can inform epidemiologic, public health and outbreak investigations of these human-restricted pathogens. However, challenges persist in generating high-quality genomes for downstream analyses given its obligate intracellular nature and difficulty with propagation.

View Article and Find Full Text PDF

Plasmidome of Salmonella enterica serovar Infantis recovered from surface waters in a major agricultural region for leafy greens in California.

PLoS One

January 2025

Produce Safety and Microbiology Unit, Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, United States of America.

Non-typhoidal Salmonella enterica is a leading cause of gastrointestinal illnesses in the United States. Among the 2,600 different S. enterica serovars, Infantis has been significantly linked to human illnesses and is frequently recovered from broilers and chicken parts in the U.

View Article and Find Full Text PDF

Elucidation of peptide screen for targeted identification of Yersinia pestis by nano-liquid chromatography tandem mass spectrometry.

Sci Rep

January 2025

Microbiology Division, Defence Research and Developmental Establishment, Jhansi Road, Gwalior, 474002, India.

Yersinia pestis, a Gram-negative bacterium is the causative agent of the fatal communicable disease plague. The disease had a profound impact on human history. Plague bacteria are usually transmitted to humans through the bite of an infected rat flea.

View Article and Find Full Text PDF

Background: Pseudorabies virus (PRV), porcine parvovirus (PPV) and porcine circovirus 3 (PCV3) are common in swine farms in China. Single infection or co-infection with PRV, PPV and/or PCV3 was difficult to distinguish between their clinical symptoms and pathological changes. Therefore, a quick and accurate detection method is needed for epidemiological surveillance, disease management, import and export control.

View Article and Find Full Text PDF

Porcine astrovirus (PoAstV), porcine sapovirus (PoSaV), porcine norovirus (PoNoV), and porcine rotavirus A (PoRVA) are newly discovered important porcine diarrhea viruses with a wide range of hosts and zoonotic potential, and their co-infections are often found in pig herds. In this study, the specific primers and probes were designed targeting the ORF1 gene of PoAstV, PoSaV, and PoNoV, and the VP6 gene of PoRVA. The recombinant standard plasmids were constructed, the reaction conditions (concentration of primers and probes, annealing temperature, and reaction cycle) were optimized, and the specificity, sensitivity, and reproducibility were analyzed to establish a quadruplex real-time quantitative RT-PCR (RT-qPCR) assay for the detection of these four diarrheal viruses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!