This study reports the catalytic deracemization of ketones bearing stereocenters in the α-position in a single reaction via deprotonation, followed by enantioselective protonation. The principle of microscopic reversibility, which has previously rendered this strategy elusive, is overcome by a photoredox deprotonation through single electron transfer and subsequent hydrogen atom transfer (HAT). Specifically, the irradiation of racemic pyridylketones in the presence of a single photocatalyst and a tertiary amine provides nonracemic carbonyl compounds with up to 97% enantiomeric excess. The photocatalyst harvests the visible light, induces the redox process, and is responsible for the asymmetric induction, while the amine serves as a single electron donor, HAT reagent, and proton source. This conceptually simple light-driven strategy of coupling a photoredox deprotonation with a stereocontrolled protonation, in conjunction with an enrichment process, serves as a blueprint for other deracemizations of ubiquitous carbonyl compounds.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.1c06637 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!