Objective: Post Z0011 trial, axillary lymph node dissections (ALNDs) can be performed in patients with ≥3 positive axillary lymph nodes (ALNs). We investigated the diagnostic performance of 18F-fluorodeoxyglucose PET/computed tomography (FDG PET/CT) to predict ≥3 metastasis [high nodal burden (HNB)].
Methods: We retrospectively analyzed preoperative FDG PET/CT from January 2010 to June 2012. Patients had clinical T1-2N0 primary invasive breast cancer and underwent breast-conserving surgery with sentinel lymph node biopsy ± ALND. All suspicious ALNs were counted considering FDG-avidity with morphologic changes. Images were considered positive if the axillary basin took up more FDG than the surrounding tissue. On CT, abnormal ALNs were round/ovoid or had cortical thickening with contrast enhancement. PET/CT results were compared with the histology and follow-up findings.
Results: In total, 221 females with 224 axillae were enrolled; 161 had negative, 53 had 1-2 metastasis [low nodal burden (LNB)] and 10 had HNB. The sensitivity, specificity, negative predictive value and positive predictive value of PET/CT for HNB were 70, 100, 98.6 and 100%, respectively. There was a correlation between the number of suspicious ALNs on PET/CT and the metastatic nodes on final histology. There were no significant differences in age, tumor size and FDG-avidity between patients with negative or LNB and HNB. During follow-up, 25 patients had a recurrence. The three false-negative patients did not show recurrence.
Conclusion: Preoperative PET/CT predicts HNB with high accuracy and is useful for evaluating clinical T1-2N0 invasive breast cancer.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/MNM.0000000000001466 | DOI Listing |
EClinicalMedicine
February 2025
Department of Breast and Gynaecological Surgery, Institut Curie, Paris, France.
Background: Randomized clinical trials (RCTs) are fundamental to evidence-based medicine, but their real-world impact on clinical practice often remains unmonitored. Leveraging large-scale real-world data can enable systematic monitoring of RCT effects. We aimed to develop a reproducible framework using real-world data to assess how major RCTs influence medical practice, using two pivotal surgical RCTs in gynaecologic oncology as an example-the LACC (Laparoscopic Approach to Cervical Cancer) and LION (Lymphadenectomy in Ovarian Neoplasms) trials.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Breast and Thyroid Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer, characterized by frequent recurrence, metastasis, and poor survival outcomes despite chemotherapy-based treatments. This study aims to investigate the mechanisms by which Traditional Chinese Medicine (TCM) modulates the tumor immune microenvironment in TNBC, utilizing CiteSpace and bioinformatics analysis.
Methods: We employed CiteSpace to analyze treatment hotspots and key TCM formulations, followed by bioinformatics analysis to identify the main active components, targets, associated pathways, and their clinical implications in TNBC treatment.
Front Immunol
January 2025
Key Lab of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Introduction: Breast cancer (BC) is the most prevalent malignant tumor in women, with triple-negative breast cancer (TNBC) showing the poorest prognosis among all subtypes. Glycosylation is increasingly recognized as a critical biomarker in the tumor microenvironment, particularly in BC. However, the glycosylation-related genes associated with TNBC have not yet been defined.
View Article and Find Full Text PDFJ Exp Pharmacol
January 2025
University Center of Excellence for Nutraceuticals, Bioscience and Biotechnology Research Center, Bandung Institute of Technology, Bandung, West Java, Indonesia.
Purpose: A promising feature of marine sponges is the potential anticancer efficacy of their secondary metabolites. The objective of this study was to explore the anticancer activities of compounds from the fungal symbiont of on breast cancer cells.
Methods: In the present research, , an endophytic fungal strain derived from the marine sponge was successfully isolated and characterized.
Breast Cancer (Dove Med Press)
January 2025
Immunology Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, 21859, Saudi Arabia.
Nanoparticle technology has revolutionized breast cancer treatment by offering innovative solutions addressing the gaps in traditional treatment methods. This paper aimed to comprehensively explore the historical journey and advancements of nanoparticles in breast cancer treatment, highlighting their transformative impact on modern medicine. The discussion traces the evolution of nanoparticle-based therapies from their early conceptualization to their current applications and future potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!