Enoyl acyl carrier protein reductase (InhA) is a key enzyme involved in fatty acid synthesis mainly mycolic acid biosynthesis that is a part of NADH dependent acyl carrier protein reductase family. The aim of the present literature is to underline the different scaffolds or enzyme inhibitors that inhibit mycolic acid biosynthesis mainly cell wall synthesis by inhibiting enzyme InhA. Various scaffolds were identified based on the screening technologies like high throughput screening, encoded library technology, fragment-based screening. The compounds studied include indirect inhibitors (Isoniazid, Ethionamide, Prothionamide) and direct inhibitors (Triclosan/Diphenyl ethers, Pyrrolidine Carboxamides, Pyrroles, Acetamides, Thiadiazoles, Triazoles) with better efficacy against drug resistance. Out of the several scaffolds studied, pyrrolidine carboxamides were found to be the best molecules targeting InhA having good bioavailability properties and better MIC. This review provides with a detailed information, analysis, structure activity relationship and useful insight on various scaffolds as InhA inhibitors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bioorg.2021.105242 | DOI Listing |
Chembiochem
January 2025
Osaka University: Osaka Daigaku, International Center for Biotechnology, JAPAN.
Bacillibactin (BB) is a microbial siderophore produced by Bacillus species. BB is biosynthesized from 2,3-dihydroxybenzoic acid (2,3-DHB), Gly, and L-Thr by nonribosomal peptide synthetase (NRPS) enzymes DhbE, DhbB, and DhbF. The biosynthetic gene cluster (dhb) is also conserved in some strains of thermophilic genera, Geobacillus, Anoxybacillus and Parageobacillus.
View Article and Find Full Text PDFFront Plant Sci
January 2025
School of Life Sciences, East China Normal University, Shanghai, China.
Frequent and extreme drought exerts profound effects on vegetation growth and production worldwide. It is imperative to identify key genes that regulate plant drought resistance and to investigate their underlying mechanisms of action. Long-chain fatty acids and their derivatives have been demonstrated to participate in various stages of plant growth and stress resistance; however, the effects of medium-chain fatty acids on related functions have not been thoroughly studied.
View Article and Find Full Text PDFFEBS Lett
January 2025
Department of Chemistry, Tokyo Institute of Technology (Institute of Science Tokyo), Japan.
Modular polyketide synthases (PKSs) are multi-domain enzymes involved in the biosynthesis of polyketide natural products. The dehydratase (DH) domain catalyzes the dehydration of the β-hydroxyacyl unit attached to the acyl carrier protein (ACP) domain in modular PKS. Although the DH domain likely recognizes the cognate ACP domain during the dehydration reaction, the molecular basis of DH-ACP interactions remains elusive.
View Article and Find Full Text PDFRSC Chem Biol
January 2025
Department of Chemical and Biological Engineering, University of Wisconsin - Madison Madison Wisconsin 53706 USA
Cyanobacteria are widespread, photosynthetic, gram-negative bacteria that generate numerous bioactive secondary metabolites complex biosynthetic enzymatic machinery. The model cyanobacterium sp. strain PCC 7002, hereafter referred to as PCC 7002, contains a type I polyketide synthase (PKS), termed olefin synthase (OlsWT), that synthesizes 1-nonadecene and 1,14-nonadecadiene: α-olefins that are important for growth at low temperatures.
View Article and Find Full Text PDFDrug Des Devel Ther
January 2025
Department of Hepatobiliary Surgery, Jingzhou Hospital Affiliated to Yangtze University, Jingzhou, Hubei, People's Republic of China.
Introduction: Oxidative stress is an important cause of acetaminophen (APAP)-induced liver injury (AILI). Sakuranetin (Sak) is an antitoxin from the cherry flavonoid plant with good antioxidant effects. However, whether sakuranetine has a protective effect on APAP-induced liver injury is not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!