The persistence of Mycobacterium tuberculosis (Mtb) is a major problem in managing tuberculosis (TB). Host-generated nitric oxide (NO) is perceived as one of the signals by Mtb to reprogram metabolism and respiration for persistence. However, the mechanisms involved in NO sensing and reorganizing Mtb's physiology are not fully understood. Since NO damages iron-sulfur (Fe-S) clusters of essential enzymes, the mechanism(s) involved in regulating Fe-S cluster biogenesis could help Mtb persist in host tissues. Here, we show that a transcription factor SufR (Rv1460) senses NO via its 4Fe-4S cluster and promotes persistence of Mtb by mobilizing the Fe-S cluster biogenesis system; suf operon (Rv1460-Rv1466). Analysis of anaerobically purified SufR by UV-visible spectroscopy, circular dichroism, and iron-sulfide estimation confirms the presence of a 4Fe-4S cluster. Atmospheric O and HO gradually degrade the 4Fe-4S cluster of SufR. Furthermore, electron paramagnetic resonance (EPR) analysis demonstrates that NO directly targets SufR 4Fe-4S cluster by forming a protein-bound dinitrosyl-iron-dithiol complex. DNase I footprinting, gel-shift, and in vitro transcription assays confirm that SufR directly regulates the expression of the suf operon in response to NO. Consistent with this, RNA-sequencing of MtbΔsufR demonstrates deregulation of the suf operon under NO stress. Strikingly, NO inflicted irreversible damage upon Fe-S clusters to exhaust respiratory and redox buffering capacity of MtbΔsufR. Lastly, MtbΔsufR failed to recover from a NO-induced non-growing state and displayed persistence defect inside immune-activated macrophages and murine lungs in a NO-dependent manner. Data suggest that SufR is a sensor of NO that supports persistence by reprogramming Fe-S cluster metabolism and bioenergetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8371249PMC
http://dx.doi.org/10.1016/j.redox.2021.102062DOI Listing

Publication Analysis

Top Keywords

4fe-4s cluster
20
fe-s cluster
16
cluster biogenesis
12
suf operon
12
cluster
9
mycobacterium tuberculosis
8
nitric oxide
8
mechanisms involved
8
fe-s clusters
8
sufr
7

Similar Publications

The [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.

View Article and Find Full Text PDF

Anaerobic plasmalogen production in recombinant Escherichia coli carrying plasmalogen synthase gene from Selenomonas ruminantium.

Biosci Biotechnol Biochem

December 2024

Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.

Escherichia coli expressing SrPlsAR from Selenomonas ruminantium produces plasmalogen, comprising almost 60% of the total phospholipid content under anaerobic conditions. Both plasmenylethanolamine and plasmenylglycerol were detected, and the major acyl aldehyde derived from sn-1 vinyl ether was C16:1. Plasmalogen synthesis is affected by mutations in ATP-binding sites and Cys expected to be involved in the formation of the [4Fe-4S] cluster.

View Article and Find Full Text PDF

Two aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.

View Article and Find Full Text PDF

Crucial role and conservation of the three [2Fe-2S] clusters in the human mitochondrial ribosome.

J Biol Chem

December 2024

Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35032 Marburg, Germany. Electronic address:

Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits.

View Article and Find Full Text PDF

2-Thiouridine formation in : a critical review.

J Bacteriol

December 2024

Department of Molecular Enzymology, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Brandenburg, Germany.

Modifications of transfer RNA (tRNA) have been shown to play critical roles in the biogenesis, metabolism, structural stability, and function of RNA molecules, and the specific modifications of nucleobases with sulfur atoms in tRNA are present in prokaryotes and eukaryotes. The s group of sU34 stabilizes anticodon structure, confers ribosome-binding ability to tRNA, and improves reading frame maintenance. In particular, specific enzymes catalyze the biosynthesis of sulfur-containing nucleosides of sU34, such as the L-cysteine desulfurase IscS and the tRNA thiouridylase MnmA in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!