Background: Amyloid positron emission tomography (PET) makes it possible to diagnose Alzheimer's disease (AD) in its prodromal phase including mild cognitive impairment (MCI). This study evaluated the cost-effectiveness of including amyloid-PET for assessing individuals with MCI.

Methods: The target population was 60-year-old patients who were diagnosed with MCI. We constructed a Markov model for the natural history of AD with the amyloid positivity (AP). Because amyloid-PET can detect the AP MCI state, AD detection can be made faster by reducing the follow-up interval for a high-risk group. The health outcomes were evaluated in quality-adjusted life years (QALYs) and the final results of cost-effectiveness analysis were presented in the form of the Incremental Cost-Effectiveness Ratio (ICER). To handle parameter uncertainties, one-way sensitivity analyses for various variables were performed.

Results: Our model showed that amyloid-PET increased QALYs by 0.003 in individuals with MCI. The estimated additional costs for adopting amyloid-PET amounted to a total of 1250 USD per patient when compared with the cost when amyloid-PET is not adopted. The ICER was 3,71,545 USD per QALY. According to the sensitivity analyses, treatment effect of Donepezil and virtual intervention effect in MCI state were the most influential factors.

Conclusions: In our model, using amyloid-PET at the MCI stage was not cost-effective. Future advances in management of cognitive impairment would enhance QALYs, and consequently improve cost-effectiveness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8364075PMC
http://dx.doi.org/10.1186/s12962-021-00300-9DOI Listing

Publication Analysis

Top Keywords

cognitive impairment
12
amyloid positron
8
positron emission
8
emission tomography
8
mild cognitive
8
mci state
8
sensitivity analyses
8
model amyloid-pet
8
mci
6
amyloid-pet
6

Similar Publications

Background: Huntington disease (HD), a neurodegenerative autosomal dominant disorder, is characterized by involuntary choreatic movements with cognitive and behavioral disturbances. Up to now, no therapeutic strategies are available to completely ameliorate the progression of HD. has various pharmacologic effects such as antioxidant and anti-inflammatory activities.

View Article and Find Full Text PDF

High blood pressure is a significant risk factor for cardiovascular diseases and is linked to an increased risk of mild cognitive impairment (MCI). The lack of effective treatments for these conditions highlights the urgent need for novel therapeutic approaches. Recent research suggests that the gut microbiota-brain-gut axis plays a crucial role in the pathogenesis of hypertension and MCI by regulating the nervous, endocrine, and immune systems.

View Article and Find Full Text PDF

Background And Purpose: Vestibular migraine (VM) is a common clinical disorder with a genetic predisposition characterized by recurrent episodes of dizziness/vertigo. Patients often complain of the presence of cognitive dysfunction manifestations such as memory loss, which causes great distress in daily life. In this study, we will explore the characteristics and possible risk factors of VM-related cognitive dysfunction by observing the cognitive function and vestibular function status of VM patients, laying the foundation for further exploration of the mechanisms of VM-related cognitive dysfunction.

View Article and Find Full Text PDF

Purpose: Low density of electroencephalogram alpha band power was reported to be associated with perioperative cognitive dysfunction. Few studies have conducted to explore the effects of remimazolam on intraoperative frontal alpha band power spectrum density in older adults. Here, we aimed to explore the impact of remimazolam on intraoperative frontal brain wave alpha band activity and postoperative cognitive function in older adults undergoing lower extremity fractures surgeries.

View Article and Find Full Text PDF

As a key inflammatory factor, the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome plays a crucial role in neuroinflammation and the progression of neurodegenerative diseases. Dysregulation of NLRP3 signaling can trigger various inflammatory responses in the brain, contributing to the development of neurodegenerative diseases such as ischemic stroke, vascular dementia (VaD), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Therefore, the NLRP3 signaling pathway is a promising therapeutic target for the treatment of neurodegenerative diseases, including VaD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!