In view of damaging impacts of cadmium (Cd) toxicity on various vital processes of plants and strategies for alleviating these effects, selenium (Se) application has been recently achieved great attention. In addition, chitosan (CS) and its nano-form, besides many positive effects on plants, could be considered as an excellent adsorption matrix and a carrier for a wide range of materials like Se with various applications in agricultural sector. For that point, the combination nano-form of Se and CS (CS-Se NPs), using CS as a carrier and control releaser for Se, could enhance Se efficiency particularly at lower doses under stress conditions. Therefore, Se (10 mg L), CS (0.1%) and CS-Se NPs (in two concentrations; 5 and 10 mg L) were applied on Moldavian balm plant under 0, 2.5 and 5 mg kg Cd-stress conditions. The results demonstrated that mostly Se and CS-Se NPs treatments could lessen negative effects of Cd-stress conditions through enhancing agronomic traits, photosynthetic pigments, chlorophyll fluorescence parameters and SPAD, proline, phenols, antioxidant enzymes activities and some dominant constituents of essential oils and decreasing MDA and HO. These encouraging impacts were more significant at lower dose of CS-Se NPs (5 mg L) introducing it as the best treatment to ameliorate Moldavian balm performance under Cd-stress conditions. In conclusion, CS-Se NPs could be considered as a supportive approach in plant production mainly under different heavy metal stressful conditions and probably a potential plant growth promoting and stress protecting agent with new outlooks for applying in agricultural sector.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2021.08.013DOI Listing

Publication Analysis

Top Keywords

cs-se nps
24
cd-stress conditions
12
antioxidant enzymes
8
enzymes activities
8
essential oils
8
cadmium toxicity
8
agricultural sector
8
moldavian balm
8
cs-se
6
nps
6

Similar Publications

Background: Abiotic stress, such as salinity, affects the photosynthetic apparatus of plants. It is reported that the use of selenium nanoparticles (Se NPs), and biochemical compounds such as chitosan (CS) increase the tolerance of plants to stress conditions. Therefore, this study aimed to elucidate the potential of Se NPs, CS, and their composite (CS + Se NPs) in improving the photosynthetic apparatus of C.

View Article and Find Full Text PDF

Enhanced uranium sequestration through selenite-modified nano-chitosan loaded with melatonin: Facilitating U(IV) conversion.

Int J Pharm

September 2024

State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing 400038, China. Electronic address:

The combined chemotoxicity and radiotoxicity associated with uranium, utilized in nuclear industry and military applications, poses significant threats to human health. Among uranium pollutants, uranyl is particularly concerning due to its high absorptivity and potent nephrotoxicity in its + 6 valence state. Here, we have serendipitously found NaSeO facilitates the conversion of U(VI) to U(IV) precipitates.

View Article and Find Full Text PDF

In this study salicylic acid loaded containing selenium nanoparticles was synthesized and called SA@CS-Se NPs. the chitosan was used as a natural stabilizer during the synthesis process. Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (XRD), field emission electron microscopy (FESEM), and transmission electron microscopy (TEM) were used to describe the physicochemical characteristics of the SA@CS-Se NPs.

View Article and Find Full Text PDF

In vitro toxicological assessment and biosensing potential of bioinspired chitosan nanoparticles, selenium nanoparticles, chitosan/selenium nanocomposites, silver nanoparticles and chitosan/silver nanocomposites.

Chemosphere

August 2022

Department of Food Science and Technology, College of Agriculture and Life Sciences, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea; Department of Agricultural Convergence Technology, College of Agriculture and Life Science, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea. Electronic address:

Hydrogen peroxide (HO) is widely used in various industries and biological fields. HO rapidly contaminants with water resources and hence simple detection process is highly wanted in various fields. The present study was focused on the biosensing, antimicrobial and embryotoxicity of bioinspired chitosan nanoparticles (Cs NPs), selenium nanoparticles (Se NPs), chitosan/selenium nanocomposites (Cs/Se NCs), silver nanoparticles (Ag NPs) and chitosan/silver nanocomposites (Cs/Ag NCs) synthesized using the aqueous Cucurbita pepo Linn.

View Article and Find Full Text PDF

In view of damaging impacts of cadmium (Cd) toxicity on various vital processes of plants and strategies for alleviating these effects, selenium (Se) application has been recently achieved great attention. In addition, chitosan (CS) and its nano-form, besides many positive effects on plants, could be considered as an excellent adsorption matrix and a carrier for a wide range of materials like Se with various applications in agricultural sector. For that point, the combination nano-form of Se and CS (CS-Se NPs), using CS as a carrier and control releaser for Se, could enhance Se efficiency particularly at lower doses under stress conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!