A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Arginine-phenylalanine and arginine-tryptophan-based surfactants as new biocompatible antifungal agents and their synergistic effect with Amphotericin B against fluconazole-resistant Candida strains. | LitMetric

In the past two decades, the increase in microbial resistance to conventional antimicrobials has spurred scientists around the world to search tirelessly for new treatments. Synthetic amino acid-based surfactants constitute a promising alternative to conventional antimicrobial compounds. In this work, two new cationic amino acid-based surfactants were synthesized and their physicochemical, antifungal and antibiofilm properties evaluated. The surfactants were based on phenylalanine-arginine (LPAM) and tryptophan-arginine (LTAM) and prepared from renewable raw materials using a simple chemical procedure. The critical micelle concentrations of the new surfactants were determined by conductivity and fluorescence. Micellization of LPAM and LTAM took place at 1.05 and 0.54 mM, respectively. Both exhibited good antifungal activity against fluconazole-resistant Candida spp. strains, with a low minimum inhibitory concentration (8.2 μg/mL). Their mechanism of action involves alterations in cell membrane permeability and mitochondrial damage, leading to death by apoptosis. Furthermore, when LPAM and LTAM were applied with Amphotericin B, a significant synergistic effect was observed against all the studied Candida strains. These new cationic surfactants are also able to disperse biofilms of Candida spp. at low concentrations. The results indicate that LPAM and LTAM have potential application to combat the advance of fungal resistance as well as microbial biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2021.112017DOI Listing

Publication Analysis

Top Keywords

lpam ltam
12
fluconazole-resistant candida
8
candida strains
8
amino acid-based
8
acid-based surfactants
8
candida spp
8
surfactants
6
arginine-phenylalanine arginine-tryptophan-based
4
arginine-tryptophan-based surfactants
4
surfactants biocompatible
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!