We investigated the accumulation of litter along a transition gradient from the dunal beaches (B), to the backdunes (BD), to the channels of a coastal wetland (W), considering both the total litter and a sub-category represented by expanded polystyrene (EPS). Using a removal sampling technique carried out in spring (April and May), we hypothesized that: (i) the total accumulation of litter decreases progressively from the dunes to the backdunes to wet environments while (ii) the lighter polystyrene concentrates in the BD-W fringe where the Phragmites australis reedbeds can have a sink role for this polymer. The total litter density showed a significant decrease along the gradient B-BD-W in both months, with an evident collapse between BD and W. Analogously, EPS showed a significant difference in density along the B-BD-W gradient in both months, although with a different pattern: a maximum in the BD and a significant collapse between BD and W. The presence of backdune hygrophilous vegetation (Phragmites australis' reedbeds) may act as a sink trapping all types of litter in both cases (total litter and EPS). The different accumulation pattern between total litter and the EPS is due to the lower specific weight of the latter polymer: while the generic litter tends to decrease quantitatively moving away from the sea, the lighter EPS is removed by the winds and pushed towards the land, beyond the dune, where it is trapped by the vegetation, thus showing a peak in density in the backdunes. No significant differences were observed between the litter density in the two months (before and after the removal) either considering the total litter and only EPS. This may suggest a continuous supply of litter from the sea, highlighting how clean-ups actions should be carried out with a higher frequency rather than monthly. This may be even more valid in the period of greater frequency of intense weather-marine events (autumn-winter) when a greater quantity of litter is deposited. These are the first data for the Mediterranean regarding a specific role of wetland hygrophilous vegetation as a sink for anthropogenic litter, mainly expanded polystyrene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2021.112829 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!